Skip to main content

Advertisement

Log in

Advanced Pancreatic Cancer

Current and Future Treatment Options

  • Review Article
  • Published:
American Journal of Cancer

Abstract

Carcinoma of the pancreas remains a lethal disease, but much progress has been made in understanding the biology of this cancer. The many genes known to be mutated in the malignant pancreatic cancer cell, especially K-ras and pl6INK4, allow the tumor to grow rapidly, metastasize early and not respond to most conventional chemotherapy agents. Combinations of newer agents that can inhibit the up-regulated growth pathway, including anti-growth factor receptor antibodies, anti-growth factor tyrosine kinases, anti-ras molecules, anti-cyclin Dl, and anti-transcription factors, may correct and stop the growth of these cells. Anti-angiogenesis factors and anti-integrins may decrease or block metastasis. Combining these new agents with gemcitabine and other chemotherapy agents will hopefully improve the prognosis for patients with pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. Wynder EL, Mabuchi K, Maruchi N, et al. A case control study of cancer of the pancreas. Cancer 1973; 31: 641–8

    Article  PubMed  CAS  Google Scholar 

  2. La Vecchia C, Boyle P, Francheschi S, et al. Smoking and cancer with emphasis on Europe. Eur J Cancer 1991; 27: 94–194

    Article  Google Scholar 

  3. Zheng W, McLaughlin JK, Gridley G, et al. A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States). Cancer Causes Control 1993; 4: 477–82

    Article  PubMed  CAS  Google Scholar 

  4. Silverman DT, Dunn JA, Hoover RN, et al. Cigarette smoking and pancreas cancer: a case-control study based on direct interviews. J Natl Cancer Inst 1994; 86: 1510–6

    Article  PubMed  CAS  Google Scholar 

  5. Berger DH, Chang H, Wood M, et al. Mutational activation of K-ras in nonneo-plastic exocrine pancreatic lesions in relation to cigarette smoking status. Cancer 1999; 85: 326–32

    Article  PubMed  CAS  Google Scholar 

  6. Hruban RH, van Mansfeld AD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas: a study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 1993; 143: 545–54

    PubMed  CAS  Google Scholar 

  7. Michaud DS, Giovannucci E, Willett WC, et al. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 2001; 286: 921–9

    Article  PubMed  CAS  Google Scholar 

  8. Stolzenberg-Solomon RZ, Blaser MJ, Limburg PJ, et al. Helicobacter pylori sero-positivity as a risk factor for pancreatic cancer. J Natl Cancer Inst 2001; 93: 937–41

    Article  PubMed  CAS  Google Scholar 

  9. Jain M, Howe GR, St Louis P, et al. Coffee and alcohol as determinants of risk of pancreas cancer: a case-control study fromToronto.IntJ Cancer 1991; 47: 384–9

    Article  CAS  Google Scholar 

  10. Michaud DS, Giovannucci E, Willett WC, et al. Coffee and alcohol consumption and the risk of pancreatic cancer in two prospective United States cohorts. Cancer Epidemiol Biomarkers Prev 2001 May; 10(5): 429–37

    PubMed  CAS  Google Scholar 

  11. Goggins M, Schutte M, Lu J, et al. Germline BRCA1 gene mutations in patients with apparently sporatic pancreatic carcinomas. Cancer Res 1996; 56: 5360–4

    PubMed  CAS  Google Scholar 

  12. Lynch HT, Smyrk T, Kern SE, et al. Familial pancreatic cancer: a review. Semin Oncol 1996; 23: 251–75

    PubMed  CAS  Google Scholar 

  13. Platz A, Hansson J, Mansson-Brahme E, et al. Screening of germline mutations in the CDKN2A and CKDN2B genes in Swedish families with hereditary cutaneous melanoma. J Natl Cancer Inst 1997; 89: 697–702

    Article  PubMed  CAS  Google Scholar 

  14. Giardiello FM, Welsh SB, Hamilton SR, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000; 119: 1447–53

    Article  PubMed  CAS  Google Scholar 

  15. Lowenfels AB, Maisonneuve P, DiMango EP, et al. Hereditary pancreatitis and the risk of pancreatic cancer: International Hereditary Pancreatitis Study Group. JNatl Cancer Inst 1997; 89: 565–73

    Article  Google Scholar 

  16. Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 1997; 57: 1731–4

    Google Scholar 

  17. Huang L, Lang D, Geradts J, et al. Molecular and immunochemical analysis of RB1 and cyclin D1 in human ductal pancreatic carcinomas and cell lines. Mol Carcinog 1966; 15: 85–95

    Article  Google Scholar 

  18. Lowy DR, Willumsen BM. Function and regulation of Ras. Annu Rev Biochem 1993; 62: 851–91

    Article  PubMed  CAS  Google Scholar 

  19. Wittinghofer A, Herrman C. Ras-effector interactions, the problem of specificity. FEBS Lett 1995; 369: 52–6

    Article  PubMed  CAS  Google Scholar 

  20. Boguski MS,McCormickF. Proteins regulatingRas and its relatives. Nature 1993; 366: 643–54

    Article  PubMed  CAS  Google Scholar 

  21. Marshall CJ. Ras effectors. Curr Opin Cell Biol 1996; 8: 197–204

    Article  PubMed  CAS  Google Scholar 

  22. Fan J, Bertino JR. K-ras modulates the cell cycle via both positive and negative regulatory pathways. Oncogene 1997; 14: 2595–607

    Article  PubMed  CAS  Google Scholar 

  23. Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery vis regulation of cyclin D1 and the cdk inhibitor p27KIP. Mol Cell Biol 1997; 17: 3850–7

    PubMed  CAS  Google Scholar 

  24. Rak J, Filmus J, Finkenzeller G, et al. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 1995; 14: 263–77

    Article  PubMed  CAS  Google Scholar 

  25. Friess H, Kleeff J, Korc M, et al. Molecular aspects of pancreatic cancer and future perspectives. Dig Surg 1999; 16: 281–90

    Article  PubMed  CAS  Google Scholar 

  26. Dong M, Nio Y, Guo KJ, et al. Epidermal growth factor and its receptor as prognostic indicators in Chinese patients with pancreatic cancer. Anticancer Res 1998; 18: 4613–9

    PubMed  CAS  Google Scholar 

  27. Gansauge F, Gansauge S, Schmidt E, et al. Prognostic significance of molecular alterations in human pancreatic carcinoma: an immunohistological study. Langenbecks Arch Surg l998; 383: 152–5

    PubMed  CAS  Google Scholar 

  28. Yamanaka Y, Friess H, Kobrin MS, et al. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 1993; 13: 565–9

    PubMed  CAS  Google Scholar 

  29. Barton CM, Hall PA, Hughs CM, et al. Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol 1991; 163: 111–6

    Article  PubMed  CAS  Google Scholar 

  30. Yamanaka Y. The immunohistochemical expressions of epidermal growth factors, epidermal growth factor receptors and c-erbB-2 oncoprotein in human pancreatic cancer. Nippon Ika Daigaku Zasshi 1992; 59: 51–61

    PubMed  CAS  Google Scholar 

  31. Hall PA, Hughes CM, Staddon SL, et al. The c-erb B-2proto-oncogene in human pancreatic cancer. JPathol 1990; 161: 195–200

    Article  CAS  Google Scholar 

  32. Dugan MC, Dergham ST, Kucway R, et al. HER-2/neu expression in pancreatic adenocarcinoma: relation to tumor differentiation and survival. Pancreas 1997; 14: 229–36

    Article  PubMed  CAS  Google Scholar 

  33. Day JD, Digiuseppe JA, Yeo C, et al. Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum Pathol 1996; 27: 119–24

    Article  PubMed  CAS  Google Scholar 

  34. Friess H, Yamanaka Y, Kobrin MS, et al. Enhanced erbB-3 expression in human pancreatic cancer correlates with tumor progression. Clin Cancer Res 1995; 11: 1413–20

    Google Scholar 

  35. Lemoine NR, Lobresco M, Leung H, et al. The erbB-3 gene in human pancreatic cancer. J Pathol 1992; 168: 269–73

    Article  PubMed  CAS  Google Scholar 

  36. Graber HU, Friess H, Kaufmann B, et al.ErbB -4 mRNA expression is decreased in non-meta static pancreatic cancer. Int J Cancer 1999; 84: 24–7

    Article  PubMed  CAS  Google Scholar 

  37. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–25

    Article  PubMed  CAS  Google Scholar 

  38. Wagner M, Lopez ME, Cahn M, et al. Suppression of fibroblast growth factor receptor signaling inhibits pancreatic cancer growth in vitro and in vivo. Gastro-enterology 1998; 114: 798–807

    Article  CAS  Google Scholar 

  39. Johnson DE, Williams LT. Structural and functional diversity of the FGF receptor multigene family. Adv Cancer Res 1993; 60: 1–41

    Article  PubMed  CAS  Google Scholar 

  40. Chellaiah AT, McEwen DG, Werner S, et al. Fibroblast growth factor receptor (FGFR)3. JBiol Chem 1994; 269: 11620–7

    CAS  Google Scholar 

  41. Kornmann M, Beger HG, Korc M. Role of fibroblast growth factors and their receptors in pancreatic cancer and chronic pancreatitis. Pancreas 1998; 17(2): 169–75

    Article  PubMed  CAS  Google Scholar 

  42. Kobrin MS, Yamanaka Y, Friess H, et al. Aberrant expression of type I fibroblast growth factor receptor in human pancreatic adenocarcinomas. Cancer Res 1993; 53: 4741–4

    PubMed  CAS  Google Scholar 

  43. Ohta T, Yamamoto M, Numata M, et al. Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas. Br J Cancer 1995 Oct; 72(4): 824–31

    Article  PubMed  CAS  Google Scholar 

  44. Okamoto A, Demetrick DJ, Spillare EA, et al. Mutations and altered expression of pl6INK4 in human cancer. Proc Natl Acad Sci US A 1994; 91: 11045–9

    Article  CAS  Google Scholar 

  45. Sherkey JL. Guanine nucleotide biosynthesis is regulated by the cellular p53 concentration. J Biol Chem 1991; 266: 24815–28

    Google Scholar 

  46. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–25

    Article  PubMed  CAS  Google Scholar 

  47. Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature 1997; 389: 300–5

    Article  PubMed  CAS  Google Scholar 

  48. Liu VW, Shi HH, Cheung AN, et al. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res 2001; 61: 5998–6001

    PubMed  CAS  Google Scholar 

  49. Sanchez-Alcazar JA, Khodjakov A, Schneider E. Anticancer drugs induce increased mitochondrial cytochrome c expression that precedes cell death. Cancer Res 2001; 61: 1038–44

    PubMed  CAS  Google Scholar 

  50. Riggins GJ, Kinzler KW, Vogelstein B, et al. Frequency of Smad mutations in human cancers. Cancer Res 1997; 57: 2578–80

    PubMed  CAS  Google Scholar 

  51. Zhang Y, Musci T, Derynck R. The tumor suppressor Smad4/DPC4 as a central mediator for Smad function. Curr Biol 1997; 7: 270–6

    Article  PubMed  Google Scholar 

  52. Hannon GJ, Beach D.pl5INK4B is a potential effector of TGF beta-induced cell cycle arrest. Nature 1994; 371: 257–61

    Article  PubMed  CAS  Google Scholar 

  53. Polyak K, Lee MH, Erdjument-Bromage H, et al.p27Kipl,acyclin-Cdkinhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22

    Article  PubMed  CAS  Google Scholar 

  54. Reynisdottir I, Polyak K, Iavarone A, et al. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 1995; 9: 1831–45

    Article  PubMed  CAS  Google Scholar 

  55. BottingerEP, Jakubczak JL, Roberts IS, et al. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in the regulation of growth and differentiation in the exocrine pancreas. EMBO J 1997; 16: 2621–33

    Article  Google Scholar 

  56. Bennett KL, Bradshaw J, Youngman T, et al. Deleted in colorectal carcinoma (DCC) binds heparin vis its fifth firbonectin type III domain. J Biol Chem 1997; 272: 26940–6

    Article  PubMed  CAS  Google Scholar 

  57. Hilgers W, Song JJ, Haye M, et al. Homozygous deletions inactivate DCC, but not MADH4/DPC4/SMAD4, in a subset of pancreatic and biliary cancers. Genes Chromosomes Cancer 2000; 27: 353–7

    Article  PubMed  CAS  Google Scholar 

  58. Tarafa G, Villanueva A, Farre L, et al. DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene 2000 Jan 27; 19(4): 546–55

    Article  PubMed  CAS  Google Scholar 

  59. Forcet C, Ye X, Granger L, et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanismfor caspase activation. Proc Nat Acad Sci 2001; 98: 3416–21

    Article  PubMed  CAS  Google Scholar 

  60. Tani T, Lumme A, Linnala A, et al. Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane. Am JPathol 1997; 151: 1289–302

    CAS  Google Scholar 

  61. Weinel RJ, Rosendahl A, Pinschmidt E, et al. The alpha 6-integrin receptor in pancreatic carcinoma. Gastroenterology 1995; 108: 523–32

    Article  PubMed  CAS  Google Scholar 

  62. Weinel RJ, Rosendahl A, Neumann K, et al. Expression and function of VLA-alpha 2, -alpha 3, -alpha 5 and -alpha 6-integrin receptors in pancreatic carcinoma. Int J Cancer 1992 Nov 11; 52: 827–33

    Article  PubMed  CAS  Google Scholar 

  63. Bakkevold KE, Arnesjo B, Kambestad B. Carcinoma of the pancreas and the papilla of Vater presenting symptoms, signs, and diagnosis related to stage and tumour site. Scand J Gastroenterol 1992; 27: 317–25

    Article  PubMed  CAS  Google Scholar 

  64. Mertz HR, Sechopoulos P, Delbeke D, et al. EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. Gastrointest Endosc 2000 Sep; 52(3): 367–71

    Article  PubMed  CAS  Google Scholar 

  65. Sendler A, Avril N, Helmberger H, et al. Preoperative evaluation of pancreatic masses with positron emission tomography using 18F-fluorodeoxyglucose: diagnostic limitations. World J Surg 2000; 24: l121–9

    Article  Google Scholar 

  66. Petrek JA, Sandberg WA, Bean PK, et al. Can survival in pancreatic adenocarcinoma be predicted by primary size or stage? Am Surg 1985; 51: 42–6

    PubMed  CAS  Google Scholar 

  67. Nagakawa T, Ohta T, Kayahara M, et al. Clinicopathological evaluation of long-term survivors treated for cancer of the head of pancreas. Hepatogastroenterology 1998; 45: 1865–9

    PubMed  CAS  Google Scholar 

  68. Gastrointestinal Tumor Study Group. Further evidence of effective adjuvant combined radiation and chemotherapy following curative resection of pancreatic cancer. Cancer 1987 Jun 15; 59(12): 2006–10

    Article  Google Scholar 

  69. Neoptolemos JP, Dunn JA, Stocken DD, et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 2001; 358: 1576–85

    Article  PubMed  CAS  Google Scholar 

  70. Moertel CG, Frytak S, Hahn RG, et al. Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 Rads) radiation alone, moderate dose radiation (4000 Rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: the Gastrointestinal Tumor Study Group. Cancer 1981; 48: 1705–10

    Article  PubMed  CAS  Google Scholar 

  71. Glenn J, Steinberg WM, Kutrzman SH, et al. Evaluation of the utility of aradio-immunoassay for serum Ca 19-9 levels in patients before and after treatment of carcinoma of the pancreas. J Clin Oncol 1988; 6: 462–8

    PubMed  CAS  Google Scholar 

  72. HalmU, Schumann T, Schiefke I, et al. Decrease of CA 19-9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br J Cancer 2000; 82: 1013–6

    Article  Google Scholar 

  73. Heinemann V, Schermuly MM, Stieber P, et al. CA19-9: a predictor of response in pancreatic cancer treated with gemcitabine and cisplatin. Anticancer Res 1999; 19: 2433–5

    PubMed  CAS  Google Scholar 

  74. Burris III HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15: 2403–13

    PubMed  CAS  Google Scholar 

  75. Heinemann V, Xu Y-Z, Chubb S, et al. Cellular elimination of 2′,2′-difluoro-deoxydytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res 1992; 53: 533–9

    Google Scholar 

  76. McKenzie R, Fried MW, Sallie R, et al. Hepatic failure and lactic acidosis due to fialuridine (HAU), an investigational nucleoside analogue for chronic hepatitis B.NEngl J Med l995; 333: 1099–105

    Google Scholar 

  77. Lewis W, Levine ES, Griniuviene B, et al. Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc Natl Acad Sci U S A 1996; 93: 3592–7

    Article  PubMed  CAS  Google Scholar 

  78. Ruiz van Haperen VWT, Veerman G, Vermorken JB, et al. 2′,2′-difluoro-deoxydytidine (gemcitabine) incorporation into RNA and DNA of tumor cell lines. Biochem Pharmacol 1993; 46: 762–6

    Article  Google Scholar 

  79. Tempero M, Plunkett W, Ruiz van Haperen V, et al. Randomized phase II trail of dose intense gemcitabine by standard infusion vs fixed does rate in metastatic pancreatic adenocarcinoma [abstract]. Proc AmSoc Clin Oncol 1999; 18: 273a

    Google Scholar 

  80. Cascinu S, Silva RR, Barni S, et al. A combination of gemcitabine and 5-fluorouracil in advanced pancreatic cancer, a report form the Italian Group for the Study of Digestive Tract Cancer (GISCAD). Br J Cancer 1999; 80: 1595–8

    Article  PubMed  CAS  Google Scholar 

  81. Pastorelli D, Pedrazoli S, Sperti C, et al. Phase II study of gemcitabine (GEM) + 5-fluorouracil (5-FU) in advanced pancreatic cancer (APC) [abstract]. Proc Am Soc Clin Oncol 2000; 19: 284a

    Google Scholar 

  82. De Gussmao CBRA, Murad AM, Scalabrini-Neto AM. Phase II trial of the use of gemcitabine and 5-fluorouracil in the treatment of advanced pancreatic and biliary tract adenocarcinoma [abstract]. Proc AmSoc Clin Oncol 1998; 17: 168a

    Google Scholar 

  83. Hildago M, Castellano D, Paz-Ares L, et al. Phase I-II study of gemcitabine and fluorouracil as a continuous infusion in patients with pancreatic cancer. J Clin Oncol 1999; 17: 585–92

    Google Scholar 

  84. Schulman KL, Kindler HL, Lad TE, et al. Phase II study of gemcitabine (g) and continuous intravenous infusion (CIV) 5-fluorouracil (5-FU) in advanced pancreatic cancer (PC): a University of Chicago phase II consortium study [abstract]. Proc Am Soc Clin Oncol 2000; 19: 288a

    Google Scholar 

  85. Louvet C, Hammel P, Andre T, et al. Multicenter phase II study in advanced pancreatic adenocarcinoma patients treated with a combination of leucovorin, 5-FU bolus and infusion, and gemcitabine (FOLFUGME regimen) [abstract]. Proc AmSoc Clin Oncol 1999; 18: 275a

    Google Scholar 

  86. Rodriguez-Lescure A, Carracto A, Massuti B, et al. Phase II study of gemcitabine (GEM) and weekly 48-hour continuous infusion (CI) high dose 5-fluorouracil (5-FU) in advanced exocrine pancreatic cancer (APC) [abstract]. Proc AmSoc Clin Oncol 2000; 19: 293a

    Google Scholar 

  87. Lencioni M, Falcone A, Masi G, et al. Phase I-II study of gemcitabine in combination with 24 hours continuous infusion (CI) of 5-fluorouracil (5-FU) and L-leucovorin (LV) in patients (pts) with advanced pancreatic carcinoma [abstract]. Proc Am Soc Clin Oncol 2000; 19: 313a

    Google Scholar 

  88. Reidel C, Wein A, Wehler M, et al. High-dose 5-fluorouracil (FU) 24-hour-infusion with gemcitabine (GEM): tolerable and efficient in palliative outpatient treatment of pancreatic cancer [abstract]. Proc Am Soc Clin Oncol 2000; 19: 316a

    Google Scholar 

  89. Berlin J, Catalano P, Thomas J, et al. A phase III study of gemcitabine in combination with 5-FU vs gemcitabine alone in patients with advanced pancreatic carcinoma (E2297): and Eastern Cooperative Oncology Group (ECOG) trial [abstract]. Proc AmSoc Clin Oncol 2001, 20 127a

    Google Scholar 

  90. Hess V, Borner M, Morant R, et al. Gemcitabine and capecitabine for advanced pancreatic cancer: a phase I/II trial [abstract]. Eur J Cancer 2001; 37Suppl. 6: 315a

    Article  Google Scholar 

  91. Heinemann V, Wilke H, Possinger K, et al. Gemcitabine and cisplatin in the treatment of advanced and metastatic pancreatic cancer: final results of a phase II study [abstract]. Proc Am Soc Clin Oncol 1999; 18: 274a

    Google Scholar 

  92. Philip PA, Zalupski M, Viakevicius VK, et al. A phase II study of gemcitabine and cisplatin in advanced or metastatic pancreatic cancer [abstract]. Proc Am Soc Clin Oncol 1999; 18: 274a

    Google Scholar 

  93. Reni M, Passoni P, Villa E. Definitiveresults of aphase II trial of PEF-G (cisplatin, epirubicin, 5-fluorouracil continuous infusion, gemcitabine) in stage IV pancreatic adenocarcinoma [abstract]. Proc Am Soc Clin Oncol 2000; 19: 262a

    Google Scholar 

  94. Colucci G,Riccardi F, Giuliani F, et al. Randomized trial of gemcitabine (GEM) alone or with cisplatin (CDDP) in the treatment of advanced pancreatic cancer (APC): a phase II multicenter study of the Southern Italy Oncology Group [abstract no. 961]. Proc Am Soc Clin Oncol 1999; 18: 250a

    Google Scholar 

  95. Colucci G, Giuliani F, Gebbia V, et al. Gemcitabine alone or with cisplatin for the treatment of patients with locally advanced and/or metastatic pancreatic carcinoma: a prospective, randomized phase III study of the Gruppo Oncologia dell Ialia Meridionale. Cancer 2002; 94: 902–10

    Article  PubMed  CAS  Google Scholar 

  96. Louvet C, André T, Lledo G, et al. Gemcitabine-Oxaliplatin (GEMOX) combination in advanced pancreatic carcinoma (APC): a Gercor Multicenter Phase II Study [abstract]. Proc Am Soc Clin Oncol 2001; 20: 127a

    Google Scholar 

  97. Garnier C, Rebischung C, Chirpaz E, et al. Phase II study of a combination with leucovorin (LV), 5 FU bolus and infusion (FU), gemcitabine (GEM) and ox-aliplatin (LOHP) (FOLFU GEMOX regimen) in locally advanced (LA) and metastatic (M) pancreatic carcinoma (APC) [abstract]. Proc AmSoc Clin Oncol 2001; 20: 156a

    Google Scholar 

  98. Miller KD, Picus J, Blanke C, et al. Phase II study of the multitargeted antifolate LY231514 (ALIMTA, MTA, pemetrexed disodium) in patients with advanced pancreatic cancer. Ann Oncol 2000; 11(1): 101–3

    Article  PubMed  CAS  Google Scholar 

  99. Kindler HL, Strickland D, Dugan W, et al. Phase II trial of Alimta plus Gemzar administered every 21 days in patients with advanced pancreatic cancer [abstract]. Eur J Cancer 2001; 37Suppl. 6: 311

    Article  Google Scholar 

  100. Smith D, Gallagher N. Comparison of the efficacy and tolerability of ZD9331 with gemcitabine in locally advanced or metastatic pancreatic cancer: phase II/III trial [abstract]. Eur J Cancer 2001; 37Suppl. 6: 314

    Article  Google Scholar 

  101. Bleiberg H.CPT-11 in gastrointestinal cancer. Eur J Cancer 1999; 35(3): 371–9

    Google Scholar 

  102. Wagener DJ, Verdonk HE, Dirix LY, et al. Phase II trial of CPT-11 in patients with advanced pancreatic cancer, an EORTC Early Clinical Trials Group Study. Ann Oncol 1995; 6(2): 129–32

    PubMed  CAS  Google Scholar 

  103. Stathopoulos G, Rigatos G, Dimopoulos M, et al. Front-line treatment of pancreatic carcinoma with gemcitabine (GMB) in combination with irinotecan (CPT-11): preliminary results of a Multicenter Phase II Study [abstract]. Proc Am Soc Clin Oncol 2000; 19: 319a

    Google Scholar 

  104. Alfonso PG, Sancho JF, Mendez M, et al. A phase II study of weekly irinotecan (CPT-11) and gemcitabine (GEM) as first line treatment in locally advanced or metastatic pancreatic cancer: GOTI Study Group [abstract]. Proc AmSoc Clin Oncol 2001; 20: 144b

    Google Scholar 

  105. Rocha Lima CM, Sherman CA, Brescia FJ, et al. Irinotecan/gemcitabine combination chemotherapy in pancreatic cancer. Oncology (Huntingt) 2001; 15(3 Suppl. 5): 46–51

    Google Scholar 

  106. Stehlin JS, Giovanella BC, Natelson EA, et al. A study of 9-nitrocamptothecin (RFS-2000) in patients with advanced pancreatic cancer. Int J Oncol 1999; 14(5): 821–31

    PubMed  CAS  Google Scholar 

  107. Rivkin S, Burris H, Gerstein H, et al. A phase II study of rubitecan (RFS 2000, 9NC, 9-Nitro-20(S)-Camptothecin) in patients with refractory pancreatic cancer [abstract]. Clin Cancer Res 2000; 6: 244

    Google Scholar 

  108. Takiguchi S, Kumazawa E, Shimazoe T, et al. Antitumor effect of DX-8951, a novel camptothecin analog, on human pancreatic tumor cells and their CPT-11-resistant variants cultured in vitro and xenografted into nude mice. Jpn J Cancer Res 1997; 88(8): 760–9

    Article  PubMed  CAS  Google Scholar 

  109. D’Adamo D, Hammond L, Donehower R, et al. Final results of a phase II study of DX-8951f (Exatecan Mesylate, DX) in advanced pancreatic cancer [abstract]. Proc AmSoc Clin Oncol 2001; 20: 134a

    Google Scholar 

  110. Androulakis N, Kourousis C, Dimopoulos MA, et al. Treatment of pancreatic cancer with docetaxel and granulocyte colony-stimulating factor: a multicenter phase II study. J Clin Oncol 1999; 17(6): 1779–85

    PubMed  CAS  Google Scholar 

  111. Okada S, Sakata Y, Matsuno S, et al. Phase II study of docetaxel in patients with metastatic pancreatic cancer: a Japanese cooperative study. Cooperative Group of Docetaxel for Pancreatic Cancer in Japan. Br J Cancer 1999; 80(3-4): 438–43

    Article  PubMed  CAS  Google Scholar 

  112. Preusser P, Niederle N, Harstrick A, et al. Phase II study of docetaxel as first line chemotherapy in metastatic adenocarcinoma of thepancreas [abstract]. Proc Am Soc Clin Oncol 1999; 18: 297a

    Google Scholar 

  113. Rougier P. Docetaxel delivers new management opportunities for gastrointestinal carcinomas. Anticancer Drugs 1995; 6Suppl. 4: 25–9

    Article  PubMed  CAS  Google Scholar 

  114. Cascinu S, Gasparini G, Catalano V, et al. A phase I-II study of gemcitabine and docetaxel in advanced pancreatic cancer: a report from the Italian Group for the Study of Digestive Tract Cancer (GISCAD). Ann Oncol 1999; 10(11): 1377–9

    Article  PubMed  CAS  Google Scholar 

  115. Clark JW, Ryan DP, Kulke MH, et al. Phase II study of gemcitabine and docetaxel in patients with metastatic pancreatic cancer [abstract]. Proc Am Soc Clin Oncol 2000; 19: 313a

    Google Scholar 

  116. Sherman WH, Fine RL. Combination gemcitabine and docetaxel therapy in advanced adenocarcinoma of the pancreas [abstract]. Oncology 2001; 60(4): 316–21

    Article  PubMed  CAS  Google Scholar 

  117. Stathopoulos GP, Mavroudis D, Tsavaris N, et al. Treatment of pancreatic cancer with a combination of docetaxel, gemcitabine and granulocyte colony-stimulating factor: a phase II study of the Greek Cooperative Group for Pancreatic Cancer. Ann Oncol 2001; 12(1): 101–3

    Article  PubMed  CAS  Google Scholar 

  118. Gonzalez Cao M, Salgado E, Rodriguez J, et al. Docetaxel (D) with gemcitabine (GEM) in metastatic pancreatic cancer [abstract]. Proc Am Soc Clin Oncol 2001; 20: 131b

    Google Scholar 

  119. Shepard RC, Levy D, Stuart K, et al. Pancreatic cancer: biweekly gemcitabine/docetaxel chemotherapy [abstract]. Proc AmSoc Clin Oncol 2001; 20: 154a

    Google Scholar 

  120. Ridwelski K, Kettner E, Greiner L, et al. Multicenter phase II study of weekly docetaxel and gemcitabine for the treatment of patients (pts) with advanced or recurrent pancreatic cancer [abstract]. Proc Am Soc Clin Oncol 2001; 20: 157a

    Google Scholar 

  121. McMorris TC. Discovery and development of sesquiterpenoid derived hydroxy-methylacylfulvene: a new anticancer drug. Bioorg Med Chem 1999; 7(5): 881–6

    Article  PubMed  CAS  Google Scholar 

  122. Wang W, Waters SJ, MacDonald JR, et al. Irofulven (6-hydroxymethyl-acylfulvene, MGI 114) induces caspase 8 and 9-mediated apoptosis in human pancreatic adenocarcinoma cells. Anticancer Res 2001; 21(3B): 1789–94

    PubMed  CAS  Google Scholar 

  123. Izbicka E, Davidson K, Lawrence R, et al. Cytotoxic effects of MGI 114 are independent of tumor p53 or p21 expression. Anticancer Res 1999; 19(2A): 1299–307

    PubMed  CAS  Google Scholar 

  124. Eckhardt SG, Baker SD, Britten CD, et al. Phase I and pharmacokinetic study of irofulven, a novel mushroom-derived cytotoxin, administered for five consecutive days every four weeks in patients with advanced solid malignancies. J Clin Oncol 2000; 18(24): 4086–97

    PubMed  CAS  Google Scholar 

  125. Eckhardt SG. Preclinical and clinical activity of irofulven in pancreatic cancer. Cancer Invest 2001; 20Suppl. 1: 30–1

    Google Scholar 

  126. Raymond E, Alexandre J, Brain E, et al. Phase I study of MGI 114 (Irofulven) given as either D1,D8 q3 weeks or D1, D15 q4 weeks schedule as a 30 minute infusion in advanced solid tumors [abstract]. Eur J Cancer 2001; 37Suppl. 6: 72

    Article  Google Scholar 

  127. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7(10): 2958–70

    PubMed  CAS  Google Scholar 

  128. Solorzano CC, Baker CH, Tsan R, et al. Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin Cancer Res 2001; 7(8) 2563–72

    PubMed  CAS  Google Scholar 

  129. Apple SK, Hecht JR, Lewin DN, et al. Immunohistochemical evaluation of K-ras, p53, and HER-2/neu expression in hyperplastic, dysplastic, and carcinomatous lesions of the pancreas: evidence for multistep carcinogenesis. Hum Pathol 1999; 30: 123–9

    Article  PubMed  CAS  Google Scholar 

  130. Safran H, Steinhoff M, Mangray S, et al. Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. Am J Clin Oncol 2001; 24(5): 496–9

    Article  PubMed  CAS  Google Scholar 

  131. Baselga J, Albaneil J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol 2001; 12Suppl. 1: S35–41

    Article  PubMed  Google Scholar 

  132. Safran H, Ramanathan R, Schwartz J, et al. Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress Her-2/neu [abstract]. Proc Am Soc Clin Oncol 2001; 20: 130a

    Google Scholar 

  133. Abruzzese JL, Rosenberg A, Xiong Q, et al. Phase II study of anti-epidermal growth factor receptor (EGFR) antibody cetuimab (IMC-C225) in combination with gemcitabine in patients with advanced pancreatic cancer [abstract]. Proc AmSoc Clin Oncol 2001; 20: 130a

    Google Scholar 

  134. Stephens TD, Bunde CJ, Fillmore BJ. Mechanism of action in thalidomide tera-togenesis. Biochem Pharmacol 2000; 59: 1489–99

    Article  PubMed  CAS  Google Scholar 

  135. Lersch C, Van Cutsem E, Amado R, et al. Randomized phase II study of SCH 66336 and gemcitabine in the treatment of metastatic adenocarcinoma of the pancreas [abstract]. Proc AmSoc Clin Oncol 2001; 20: 153a

    Google Scholar 

  136. Punt CJ, van Maanen L, Bol CJ, et al. Phase I and pharmacokinetic study of the orally administered farnesyl transferase inhibitor R115777 in patients with advanced solid tumors. Anticancer Drugs 2000; 12: 193–7

    Article  Google Scholar 

  137. Zujewski J, Horak ID, Bol CJ, et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18(4): 927–41

    PubMed  CAS  Google Scholar 

  138. Ross PJ, Andreyev JHN, DiStefano F, et al. Inhibition of human Kirsten Ras (Ki-Ras) expression with a rationally selected Ki-Ras antisense (AS) olgionucleotide (ODN): analysis of function an gene expression profile by gene array in a colon cancer cell line [abstract]. Proc Am Soc Clin Oncol 2001; 20: 438a

    Google Scholar 

  139. Cunningham CC, Holmlund JT, Geary RS, et al. A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 2001; 92(5): 1265–71

    Article  PubMed  CAS  Google Scholar 

  140. Perez RP, Smith III JW, Alberts SR, et al. Phase II Trial of ISIS 2503, an antisense inhibitor of H-ras, in patients (Pts) with advanced pancreatic carcinoma [abstract]. Proc Am Soc Clin Oncol 2001; 20: 158a

    Google Scholar 

  141. Kaiser A, Nishi K, Gorin FA, et al. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch Biochem Biophys 2001; 386: 179–87

    Article  PubMed  CAS  Google Scholar 

  142. Senderowicz AM. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 2000; 19: 6600–6

    Article  PubMed  CAS  Google Scholar 

  143. Jung CP, Motwani MV, Schwartz GK. Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation ofribonucleotidereductaseM2 subunit. Clin Cancer Res 2001; 7: 2527–36

    PubMed  CAS  Google Scholar 

  144. Owa T, Yoshino H, Yoshimatsu K, et al. Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 2001; 8: 1487–503

    Article  PubMed  CAS  Google Scholar 

  145. Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000; 19: 6680–6

    Article  PubMed  CAS  Google Scholar 

  146. Bramhall SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. Marimastat Pancreatic Cancer Study Group. J Clin Oncol 2001; 19(15): 3447–55

    PubMed  CAS  Google Scholar 

  147. Moore MJ, Hamm J, Eisenberg P, et al. A comparison between gemcitabine and the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced pancreatic cancer [abstract]. Proc AmSoc Clin Oncol 2000; 19: 240a

    Google Scholar 

  148. Liu C, Ferdinandi ES, Ely G, et al. Virulizin-2gamma, a novel immunotherapeutic agent, in treatment of human pancreatic cancer xenografts. Int J Oncol 2000; 6(5): 1015–20

    Google Scholar 

  149. Warner E, Weinroth J, Chang S, et al. Phase II trial of Virulizin in patients with pancreatic cancer. Clin Invest Med 1994; 17(1): 37–41

    PubMed  CAS  Google Scholar 

  150. McKenzie IF, Apostolopoulos V. Towards immunotherapy of pancreatic cancer. Gut 1999; 44(6): 767–9

    Article  PubMed  CAS  Google Scholar 

  151. Gjertsen MK, Bakka A, Breivik J, et al. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 1995; 346(8987): 1399–400

    Article  PubMed  CAS  Google Scholar 

  152. Gjertsen MK, Bakka A, Breivik J, et al. Ex vivo ras peptide vaccination in patients with advanced pancreatic cancer: results of a phase I/II study. Int J Cancer 1996; 65(4): 450–3

    Article  PubMed  CAS  Google Scholar 

  153. Gjertsen MK, Buanes T, Rosseland AR, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 2001; 92(3): 441–50

    Article  PubMed  CAS  Google Scholar 

  154. Wojtowicz ME, Hamilton MJ, Bernstein S, et al. Clinical trial of mutant ras peptide vaccination along with IL-2 or GM-CSF [abstract]. Proc Am Soc Clin Oncol 2000; 19: 463a

    Google Scholar 

  155. Koh TJ, Chen D. Gastrin as a growth factor in the gastrointestinal tract. Regul Pept 2000; 93: 37–4417

    Article  PubMed  CAS  Google Scholar 

  156. Gilliam AD, Henwood M, Watson SA, et al. G17DT therapy may improve the survival of patients with advanced pancreatic carcinoma [abstract]. Proc Am Soc Clin Oncol 2001; 20: 134a

    Google Scholar 

  157. Smith SL, Brett B, Bouvier C, et al. A phase II study of anti-gastrin 17 antibodies (raised to G17DT) in advanced pancreatic cancer [abstract]. Proc Am Soc Clin Oncol 2001; 20: 258a

    Google Scholar 

  158. Jaffee EM. Immunotherapy_of cancer. Ann N Y Acad Sci 1999; 886: 67–72

    Article  PubMed  CAS  Google Scholar 

  159. Jaffee EM, Hruban RH, Biedrzycki B,. Novel allogeneic granulocytemacrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001; 19: 145–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Sherman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, K.P., Sherman, W.H. Advanced Pancreatic Cancer. Am J Cancer 1, 323–340 (2002). https://doi.org/10.2165/00024669-200201050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200201050-00003

Keywords

Navigation