Skip to main content

Advertisement

Log in

Pharmacokinetics in Cancer Treatment

Clinical Implications of Interindividual Variability and Drug Interactions

  • Review Article
  • Published:
American Journal of Cancer

Abstract

The design of chemotherapy schedules for treatment of malignancies is based on the selection of optimal drug doses with tolerable adverse effects. Interindividual variation in absorption, distribution, metabolism and excretion may exist for a given dose, which depend on both physiological and pathological factors. These factors will be of importance for the outcome of treatment in terms of efficacy as well as toxicity. As chemotherapy usually consists of a combination of drugs, pharmacological interactions may be expected. This also holds for other drug classes, such as analgesics, antidepressants, antibiotics, that are frequently coadministered to patients receiving chemotherapy. The study of pharmacokinetics can give insight in to the extent of interindividual variability based on genetic and patient factors, as well as in the occurrence of drug interactions.

Many anticancer agents need specific enzymes for their metabolism. Polymorphisms in gene expression resulting in differences in enzyme activity have been described, such as thiopurine methyltransferase for metabolism of 6-mere ap top urine, dihydropyrimidine dehydrogenase for fluorouracil and uridine diphosphate (UDP) glucuronosyl transferase 1A1 for SN-38 (the active metabolite of irinotecan). Cytochrome P450 isoenzymes form a very important drug-metabolizing family and CYP3A4 is responsible for the metabolism of several classes of drugs. This isoenzyme system can easily be induced or inhibited by other drugs. Interactions combining drugs requiring both CYP3A4 for metabolism and P1 70-glycoprotein (Pgp) for transport may result in enhanced adverse effects in patients. A well-known example is the interference of taxanes with the pharmacokinetics of anthracyclines.

Patient factors, other than variable expression of drug-metabolizing enzymes, that may account for altered pharmacokinetic properties are: age, obesity, hypoalbuminemia, impaired renal or liver function. A combination of these factors may occur, especially in patients with advanced cancer.

The presence of a drug interaction may be advantageous in some instances. For example, the limited oral bioavailability of paclitaxel may be improved by inhibition of Pgp-mediated drug efflux from the intestine. The same holds true for blocking the breast cancer resistance protein transporter in the intestine to enhance oral absorption of topotecan.

It is only through prospective, preclinical and early clinical evaluation of both pharmacokinetics and pharmacodynamics, i.e. the effects of the drug on the body, that the pharmacological behavior of a particular drug can be identified. Changes in drug dose, sequence, or infusion duration, increase of the time-interval between drugs, etc., can be measures required to provide an optimal therapeutic index of combination chemotherapy for the patient with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Wolf CR, Smith G, Smith RL. Pharmacogenetics. BMJ 2000; 320: 987–90

    Article  PubMed  CAS  Google Scholar 

  2. Boddy AV, Ratain MJ. Pharmacogenetics in cancer etiology and chemotherapy. Clin Cancer Res 1997; 3: 1025–30

    PubMed  CAS  Google Scholar 

  3. Iyer L, Ratain MJ. Pharmacogenetics and cancer chemotherapy. Eur J Cancer 1998; 34: 1493–9

    Article  PubMed  CAS  Google Scholar 

  4. Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989; 7: 1816–23

    PubMed  CAS  Google Scholar 

  5. Tinel M, Berson A, Pessayre D, et al. Pharmacogenetics of human erythrocyte thiopurine methyltransferase activity in a French population. Br J Clin Pharmacol 1991; 32: 729–34

    PubMed  CAS  Google Scholar 

  6. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992; 43: 329–39

    Article  PubMed  CAS  Google Scholar 

  7. McLeod HL, Relling MV, Liu Q, et al. Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood 1995; 85: 1897–902

    PubMed  CAS  Google Scholar 

  8. McLeod HL, Krynetski EY, Relling MV, et al. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 567–72

    Article  PubMed  CAS  Google Scholar 

  9. Bergan S, Rugstad HE, Klemetsdal B, et al. Possibilities for therapeutic drug monitoring of azathioprine: 6-thioguanine nucleotide concentrations and thiopurine methyltransferase activity in red blood cells. Ther Drug Monit 1997; 19: 318–26

    Article  PubMed  CAS  Google Scholar 

  10. Krynetski EY, Tai HL, Yates CR, et al. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 1996; 6: 279–90

    Article  PubMed  CAS  Google Scholar 

  11. Etienne MC, Lagrange JL, Dassonville O, et al. Population study of dihydro-pyrimidine dehydrogenase in cancer patients. J Clin Oncol 1994; 12: 2248–53

    PubMed  CAS  Google Scholar 

  12. Milano G, Etienne MC, Pierrefite V, et al. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br J Cancer 1999; 79: 627–30

    Article  PubMed  CAS  Google Scholar 

  13. Allegra CJ. Dihydropyrimidine dehydrogenase activity: prognostic partner of 5-fluorouracil? Clin Cancer Res 1999; 5: 1947–9

    PubMed  CAS  Google Scholar 

  14. Takimoto CH, Lu ZH, Zhang R, et al. Severe neurotoxicity following 5-fluoro-uracil-based chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res 1996; 2: 477–81

    PubMed  CAS  Google Scholar 

  15. Grem JL, Chu E, Boarman D, et al. Biochemical modulation of fluorouracil with leucovorin and interferon: preclinical and clinical investigations. Semin Oncol 1992; 19Suppl. 3: 36–44

    PubMed  CAS  Google Scholar 

  16. Yee LK, Allegra CJ, Steinberg SM, et al. Decreased catabolism of fluorouracil in peripheral blood mononuclear cells during combination chemotherapy with fluorouracil, leucovorin and interferon-α2a. J Natl Cancer Inst 1992; 84: 1820–5

    Article  PubMed  CAS  Google Scholar 

  17. Seymour MT, Patel N, Johnston A, et al. Lack of effect of interferon-α2a upon fluorouracil pharmacokinetics. Br J Cancer 1994; 70: 724–8

    Article  PubMed  CAS  Google Scholar 

  18. Mackenzie PI, Owens IS, Burchell B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997; 7: 255–69

    Article  PubMed  CAS  Google Scholar 

  19. Chabot GG. Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 1997; 33: 245–59

    Article  PubMed  CAS  Google Scholar 

  20. Iyer L, Ratain MJ. Clinical pharmacology of camptothecins. Cancer Chemother Pharmacol 1998; 42 Suppl.: S31–43

    Article  PubMed  CAS  Google Scholar 

  21. Iyer L, King CD, Whitington PR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11): role of uridine diphosphate glucuronosyltransferase iso-form 1 Al in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 1998; 101: 847–54

    Article  PubMed  CAS  Google Scholar 

  22. Gupta E, Mick R, Ramirez J, et al. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol 1997; 15: 1502–10

    PubMed  CAS  Google Scholar 

  23. Gupta E, Wang X, Ramirez J, et al. Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother Pharmacol 1997; 39: 440–4

    Article  PubMed  CAS  Google Scholar 

  24. Bernard SA, Bruera E. Drug interactions in palliative care. J Clin Oncol 2000; 18: 1780–99

    PubMed  CAS  Google Scholar 

  25. Ereshefsky L, Riesenman C, Lam YWF. Antidepressant drug interactions and the cytochrome P450 system. Clin Pharmacokinet 1995; 29: 10–9

    Article  PubMed  CAS  Google Scholar 

  26. Ciummo P, Katz NL. Interactions and drug-metabolizing enzymes. Am Pharm 1995; 35: 41–52

    Google Scholar 

  27. Chang TKH, Weber GF, Crespi CL, et al. Differential activation of cyclophosph-amide and ifosphamide by cytochrome-P-450-2B and cytochrome-P450-3A in human liver-microsomes. Cancer Res 1993; 53: 5629–37

    PubMed  CAS  Google Scholar 

  28. Murray M, Butler AM, Stupans I. Competitive inhibition of human liver microsomal cytochrome P450 3A-dependent steroid 6β-hydroxylation activity by cyclophosphamide and ifosfamide in vitro. J Pharmacol Exp Ther 1994; 270: 645–9

    PubMed  CAS  Google Scholar 

  29. Cresteil T, Monsarrat B, Alvinerie P, et al. Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res 1994; 54: 386–92

    PubMed  CAS  Google Scholar 

  30. Royer I, Monsarrat B, Sonnier M, et al. Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res 1996; 56: 58–65

    PubMed  CAS  Google Scholar 

  31. Haaz MC, Rivory LP, Riché C, et al. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 1998; 58: 468–72

    PubMed  CAS  Google Scholar 

  32. Relling MV, Nemec J, Schuetz EG, et al. O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3 A4. Mol Pharmacol 1994; 45: 352–8

    PubMed  CAS  Google Scholar 

  33. Rahmani R, Zhou XJ. Pharmacokinetics and metabolism of vinca alkaloids. Cancer Surv 1993; 17: 269–81

    PubMed  CAS  Google Scholar 

  34. Jacolot F, Simon I, Dreano Y, et al. Identification of the cytochrome P450 IIIA family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes. Biochem Pharmacol 1991; 41: 1911–9

    Article  PubMed  CAS  Google Scholar 

  35. Mani C, Gelboin HV, Park SS, et al. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen, I: cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab Dispos 1993; 21: 645–56

    PubMed  CAS  Google Scholar 

  36. Kivistö KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol 1995; 40(6): 523–30

    Article  PubMed  Google Scholar 

  37. Peck CC, Temple R, Collins JM. Understanding consequences of concurrent therapies. JAMA 1993; 269: 1550–2

    Article  PubMed  CAS  Google Scholar 

  38. Shah RR. Clinical pharmacokinetics: current requirements and future perspectives from a regulatory point of view. Xenobiotica 1993; 23: 1159–93

    Article  PubMed  CAS  Google Scholar 

  39. Botsch S, Gautier JC, Beaune P, et al. Identification and characterization of the cytochromosome P450 enzymes involved in N-dealkylation of propafenone:molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol 1993; 43: 120–6

    PubMed  CAS  Google Scholar 

  40. Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedeberg’s Arch Pharmacol 1993; 348: 332–7

    Article  CAS  Google Scholar 

  41. Monsarrat B, Chatelut E, Royer I, et al. Modification of paclitaxel metabolism in a cancer patient by induction of cytochrome P450 3 A4. Drug Metab Disp 1998; 26: 229–33

    CAS  Google Scholar 

  42. Yamamoto N, Tamura T, Kamiya Y, et al. Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J Clin Oncol 2000; 18: 2301–8

    PubMed  CAS  Google Scholar 

  43. Hirth J, Watkins PB, Strawderman M, et al. The effect of an individual’s cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 2000; 6: 1255–8

    PubMed  CAS  Google Scholar 

  44. Collins JM. Cytochrome P-450 and other determinants of pharmacokinetics, toxicity and efficacy in humans. Clin Cancer Res 2000; 6: 1203–4

    PubMed  CAS  Google Scholar 

  45. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    Article  PubMed  CAS  Google Scholar 

  46. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427

    Article  PubMed  CAS  Google Scholar 

  47. Egorin MJ.Cancer pharmacology in the elderly. Semin Oncol 1993; 20: 43–9

    Google Scholar 

  48. Vestal RE. Aging and pharmacology. Cancer 1997; 80: 1302–10

    Article  PubMed  CAS  Google Scholar 

  49. VonMoltke L, Greenblatt DJ, Schmider J, et al. Metabolism of drugs by cytochrome P450 3 Aisoforms: implications for drug interactions in psychopharmacology. Clin Pharmacokinet 1995; 29: 33–44

    Article  Google Scholar 

  50. Kinirons M, Criome P. Clinical pharmaco kinetic considerations in the elderly: an update. Clin Pharmacokinet 1997; 33: 302–12

    Article  PubMed  CAS  Google Scholar 

  51. Canal P, Chatelut E, Guichard S. Practical treatment guide for dose individualisation in cancer chemotherapy. Drugs 1998; 56: 1019–38

    Article  PubMed  CAS  Google Scholar 

  52. Yamamoto N, Tamura T, Maeda M, et al. The influence of ageing on cisplatin pharmacokinetics in lung cancer patients with normal organ function. Cancer Chemother Pharmacol 1995; 36: 102–6

    Article  PubMed  CAS  Google Scholar 

  53. Miller AA, Rosner GL, Ratain MJ, et al. Pharmacology of 21-day oral etoposide given in combination with i.v. cisplatin in patients with extensive-stage small cell lung cancer: a cancer and leukemia group B study (CALGB 9062). Clin Cancer Res 1997; 3: 719–25

    PubMed  CAS  Google Scholar 

  54. Desoize B, Robert J. Individual dose adaptation of anticancer drugs. Eur J Cancer 1994; 30A: 844–51

    Article  PubMed  CAS  Google Scholar 

  55. Powis G, Reece P, Ahmann DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987; 20: 219–22

    Article  PubMed  CAS  Google Scholar 

  56. Rodvold KA, Rushing DA, Tewksbury DA. Doxorubicin clearance in the obese. J Clin Oncol 1988; 6: 1321–7

    PubMed  CAS  Google Scholar 

  57. Lind MF, Margison JM, Cerny T, et al. Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 1989; 25: 139–42

    Article  PubMed  CAS  Google Scholar 

  58. Bénézet S, Guimbaud R, Chatelut E, et al. How to predict carboplatin clearance from standard morphological and biological characteristics in obese patients. Ann Oncol 1997; 8: 607–9

    Article  PubMed  Google Scholar 

  59. Baker SD, Grochow LB, Donehower RC. Should anticancer drug doses be adjusted in the obese patient? J Natl Cancer Inst 1995; 87: 333–4

    Article  PubMed  CAS  Google Scholar 

  60. Georgiadis MS, Steinberg SM, Hankins LA, et al. Obesity and therapy-related toxicity in patients treated for small-cell lung cancer. J Natl Cancer Inst 1995; 87: 361–6

    Article  PubMed  CAS  Google Scholar 

  61. Koren G, Beatty K, Seto A, et al. The effects of impaired liver function on the elimination of antineoplastic agents. Ann Pharmacother 1992; 26: 363–71

    PubMed  CAS  Google Scholar 

  62. Donelli MG, Zucchetti M, Munzone E, et al. Pharmacokinetics of anticancer agents in patients with impaired liver function. Eur J Cancer 1998; 34: 33–46

    Article  PubMed  CAS  Google Scholar 

  63. Stewart CF. Use of etoposide in patients with organ dysfunction: pharmacokinetic and pharmacodynamic considerations. Cancer Chemother Pharmacol 1994; 34 Suppl.: S76–83

    Article  PubMed  Google Scholar 

  64. Nannan Panday VR, Huizing MT, Willemse PHB, et al. Hepatic metabolism of paclitaxel and its impact in patients with altered hepatic function. Semin Oncol 1997; 24Suppl. 11: 34–8

    Google Scholar 

  65. Twelves CJ, Dobbs NA, Gillies HC, et al. Doxorubicin pharmacoki netics: the effect of abnormal liver biochemistry tests. Cancer Chemother Pharmacol 1998; 42: 229–34

    Article  PubMed  CAS  Google Scholar 

  66. Twelves CJ, Dobbs NA, Michael Y, et al. Clinical pharmacokinetics of epirubicin: the importance of liver biochemistry tests. Br J Cancer 1992; 66: 765–9

    Article  PubMed  CAS  Google Scholar 

  67. Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989; 7: 1748–56

    PubMed  CAS  Google Scholar 

  68. Duffull SB, Robinson BA. Clinical pharmacokinetics and dose optimisation of carboplatin. Clin Pharmacokinet 1997; 33: 161–83

    Article  PubMed  CAS  Google Scholar 

  69. Welink J, Boven E, Vermorken JB, et al. Pharmacokinetics and pharmacodynamics of lobaplatin (D-19466) in patients with advanced solid tumors including patients with impaired renal or liver function. Clin Cancer Res 1999; 5: 2349–58

    PubMed  CAS  Google Scholar 

  70. O’Reilly S, Rowinsky EK, Slichenmyer W, et al. Phase I and pharmacologic study of topotecan in patients with impaired renal function. J Clin Oncol 1996; 14: 3062–73

    PubMed  Google Scholar 

  71. Rellings MV, Fairclough D, Ayers D, et al. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 1994; 12: 1667–72

    Google Scholar 

  72. Stewart CF, Fleming RA, Arbuck SG, et al. Prospective evaluation of a model for predicting etoposide plasma protein binding in cancer patients. Cancer Res 1990; 50: 6854–6

    PubMed  CAS  Google Scholar 

  73. DeMario MD, Ratain MJ. Oral chemotherapy: rationale and future directions. J Clin Oncol 1998; 16: 2557–67

    PubMed  CAS  Google Scholar 

  74. Reigner B, Verweij J, Dirix L, et al. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin Cancer Res 1998; 4: 941–8

    PubMed  CAS  Google Scholar 

  75. Bailey DG, Malcolm J, Arnold O, et al. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46: 101–10

    Article  PubMed  CAS  Google Scholar 

  76. Soldner A, Christians U, Susanto M, et al. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 1999; 16: 478–85

    Article  PubMed  CAS  Google Scholar 

  77. Speth PAJ, Van Hoesel QGCM, Haanen C. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 1988; 15: 15–31

    Article  PubMed  CAS  Google Scholar 

  78. Mross K, Maessen P, Van der Vijgh WJF, et al. Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J Clin Oncol 1988; 6: 517–26

    PubMed  CAS  Google Scholar 

  79. Minotti G, Cavaliere AF, Mordente A, et al. Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines: novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. J Clin Invest 1995; 95: 1595–605

    Article  PubMed  CAS  Google Scholar 

  80. Danesi R, Conte PF, Tacca MD. Pharmacokinetic optimisation of treatment schedules for anthracyclines and paclitaxel in patients with cancer. Clin Pharmacokinet 1999; 27: 195–211

    Article  Google Scholar 

  81. Holmes FA, Madden T, Newman RA, et al. Sequence-dependent alteration of doxorubicin pharmacokinetics by paclitaxel in a phase I study of paclitaxel and doxorubicin in patients with metastatic breast cancer. J Clin Oncol 1996; 14: 2713–21

    PubMed  CAS  Google Scholar 

  82. Gianni L, Munzone E, Capri G, et al. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: high anti-tumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J Clin Oncol 1995; 13: 2688–99

    PubMed  CAS  Google Scholar 

  83. Gianni L, Viganò L, Locatelli A, et al. Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J Clin Oncol 1997; 15: 1906–15

    PubMed  CAS  Google Scholar 

  84. Conte PF, Baldini E, Gennari A, et al. Dose-finding study and pharmacokinetics of epirubicin and paclitaxel over 3 hours: a regimen with high activity and low cardiotoxicity in advanced breast cancer. J Clin Oncol 1997; 15: 2510–7

    PubMed  CAS  Google Scholar 

  85. Esposito M, Venturini M, Vannozzi MO, et al. Comparative effects of paclitaxel and docetaxel on the metabolism and pharmacokinetics of epirubicin in breast cancer patients. J Clin Oncol 1999; 17: 1132–40

    PubMed  CAS  Google Scholar 

  86. Venturini M, Lunardi G, Del Mastro L, et al. Sequence effect of epirubicin and paclitaxel treatment on pharmacokinetics and toxicity. J Clin Oncol 2000; 18: 2116–25

    PubMed  CAS  Google Scholar 

  87. Ceruti M, Tagini V, Recalenda V, et al. Docetaxel in combination with epirubicin in metastatic breast cancer. Farmaco 1999; 54: 733–9

    Article  PubMed  CAS  Google Scholar 

  88. Webster LK, Cosson EJ, Stokes KH, et al. Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice. Br J Cancer 1996; 73: 522–4

    Article  PubMed  CAS  Google Scholar 

  89. Colombo T, Parisi I, Zucchetti M, et al. Pharmacokinetic interactions of paclitaxel, docetaxel and their vehicles with doxorubicin. Ann Oncol 1999; 10: 391–5

    Article  PubMed  CAS  Google Scholar 

  90. Brain ECG, Yu LJ, Gustafsson K, et al. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br J Cancer 1998; 77: 1768–76

    Article  PubMed  CAS  Google Scholar 

  91. Granvil CP, Madan A, Sharkawi M, et al. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. Drug Metab Dispos 1999; 27: 533–41

    PubMed  CAS  Google Scholar 

  92. Yu LJ, Drewes P, Gustafsson K, et al. In vivo modulation of alternative pathways of P450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and anti-tumor activity. J Pharmacol Exp Ther 1999; 288: 928–37

    PubMed  CAS  Google Scholar 

  93. Wagner T. Mode of action of ifosfamide: new aspects. Onkologie 1998; 21Suppl. 2: 1–4

    Article  Google Scholar 

  94. Borner K, Kisro J, Bruggemann SK, et al. Metabolism of ifosfamide to chloroacetaldehyde contributes to anti-tumor activity in vivo. Drug Metab Dispos 2000; 28: 573–6

    PubMed  CAS  Google Scholar 

  95. Huang ZQ, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59: 961–72

    Article  PubMed  CAS  Google Scholar 

  96. Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38: 291–304

    Article  PubMed  CAS  Google Scholar 

  97. Cerny T, Leyvraz S, Von Briel T, et al. Saturable metabolism of continuous high-dose ifosfamide with mesna and GM-CSF: a pharmacokinetic study in advanced sarcoma patients. Ann Oncol 1999; 10: 1087–94

    Article  PubMed  CAS  Google Scholar 

  98. Gervot L, Rochat B, Gautier VC, et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9: 295–306

    Article  PubMed  CAS  Google Scholar 

  99. Ducharme MP, Bernstein ML, Granvil CP, et al. Phenytoin-induced alteration in the N-dechloroethylation of ifosfamide stereoisomers. Cancer Chemother Pharmacol 1997; 40: 531–3

    Article  PubMed  CAS  Google Scholar 

  100. Yule SM, Walker D, Cole M, et al. The effect of fluconazole on cyclophosphamide metabolism in children. Drag Metab Dispos 1999; 27: 417–21

    CAS  Google Scholar 

  101. Gilbert CJ, Petros WP, Vredenburgh J, et al. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 1998; 42: 497–503

    Article  PubMed  CAS  Google Scholar 

  102. Cagnoni PJ, Matthes S, Day TC, et al. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplant 1999; 24: 1–4

    Article  PubMed  CAS  Google Scholar 

  103. Baker SD. Drag interactions with the taxanes. Pharmacotherapy 1997; 17 (5 Part 2): 126S–132S

    PubMed  CAS  Google Scholar 

  104. Anderson LW, Chen TL, Colvin OM, et al. Cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide kinetics in patients receiving high-dose cyclophosphamide chemotherapy. Clin Cancer Res 1996; 2: 1481–7

    PubMed  CAS  Google Scholar 

  105. Slevin ML. The clinical pharmacology of etoposide. Cancer 1991; 67: 319–29

    Article  PubMed  CAS  Google Scholar 

  106. Hande KR. Etoposide pharmacology. Sem Oncol 1992; 19Suppl. 13: 3–9

    CAS  Google Scholar 

  107. Zhao X J, Kawashiro T, Ishizaki T. Mutual inhibition between quinine and etoposide by human liver microsomes: evidence for cytochrome P450 3A4 involvement in their major metabolic pathways. Drag Metab Dispos 1998; 26: 188–91

    CAS  Google Scholar 

  108. Kawashiro T, Yamashita K, Zhao XJ, et al. A study on the metabolism of etoposide and possible interactions with anti-tumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther 1998; 286: 1294–300

    PubMed  CAS  Google Scholar 

  109. Leu BL, Huang JD. Inhibition of intestinal P-glycoprotein and effects on etoposide absorption. Cancer Chemother Pharmacol 1995; 35: 432–6

    Article  PubMed  CAS  Google Scholar 

  110. Hande K, Messenger M, Wagner J, et al. Inter- and intrapatient variability in etoposide kinetics with oral and intravenous drag administration. Clin Cancer Res 1999; 5: 2742–7

    PubMed  CAS  Google Scholar 

  111. Rodman JH, Murry DJ, Madden T, et al. Altered etoposide pharmacokinetics and time to engraftment in pediatric patients undergoing autologous bone marrow transplantation. J Clin Oncol 1994; 12: 2390–7

    PubMed  CAS  Google Scholar 

  112. Baker DK, Relling MV, Pui CH, et al. Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992; 10: 311–5

    PubMed  CAS  Google Scholar 

  113. Lum BL, Kaubisch S, Yahanda AM, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase-I trial to modulate multidrag resistance. J Clin Oncol 1992; 10: 1635–42

    PubMed  CAS  Google Scholar 

  114. Ellis AG, Crinis NA, Webster LK. Inhibition of etoposide elimination in the isolated perfused rat liver by Cremophor EL and Tween 80. Cancer Chemother Pharmacol 1996; 38: 81–7

    Article  PubMed  CAS  Google Scholar 

  115. Relling MV, McLeod HL, Bowman LC, et al. Etoposide pharmacokinetics and pharmacodynamics after acute and chronic exposure to cisplatin. Clin Pharmacol Ther 1994; 56: 503–11

    Article  PubMed  CAS  Google Scholar 

  116. Harris JW, Rahman A, Kim BR, et al. Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 1994; 54: 4026–35

    PubMed  CAS  Google Scholar 

  117. Desai PB, Duan JZ, Zhu YW, et al. Human liver microsomal metabolism of paclitaxel and drag interactions. Eur J Drag Metab Pharmacokinet 1998; 23: 417–24

    Article  CAS  Google Scholar 

  118. MarreF, Sanderink GJ, DeSousa G, et al. Hepatic biotransformation of docetaxel (TaxotereR) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 1996; 56: 1296–302

    Google Scholar 

  119. Rahman A, Korzekwa KR, Grogan J, et al. Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994; 54: 5543–6

    PubMed  CAS  Google Scholar 

  120. Sonnichsen DS, Liu Q, Schuetz EG, et al. Variability in human cytochrome-P450 paclitaxel metabolism. J Pharm Exp Ther 1995; 275: 566–75

    CAS  Google Scholar 

  121. Ellis AG, Webster LK. Inhibition of paclitaxel elimination in the isolated perfused rat liver by Cremophor EL. Cancer Chemother Pharmacol 1999; 43: 13–8

    Article  PubMed  CAS  Google Scholar 

  122. Sparreboom A, Van Zuylen L, Brouwer E,et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmaco kinetic implications. Cancer Res 1999; 59: 1454–7

    PubMed  CAS  Google Scholar 

  123. Slichenmyer WJ, Donehower RC, Chen IL, et al. Pretreatment H2-receptor antagonists that differ in P450 modulation activity: comparative effects on paclitaxel clearance rates and neutropenia. Cancer Chemother Pharmacol 1995; 36: 221–32

    Article  Google Scholar 

  124. Kearns CM, Gianni L, Egorin MJ. Paclitaxel pharmacokinetics and pharmacodynamics. Sem Oncol 1995; 22Suppl. 16: 16–23

    CAS  Google Scholar 

  125. Eisenhauer EA. Docetaxel: current status and future prospects. J Clin Oncol 1995; 13: 2865–8

    PubMed  CAS  Google Scholar 

  126. Nannan Panday VR, De Wit R, Schornagel JH, et al. Pharmacokinetics of paclitaxel administered in combination with cisplatin, etoposide and bleomycin in patients with advanced solid tumours. Cancer Chemother Pharmacol 1999; 44: 349–53

    Article  Google Scholar 

  127. Bhalla KN, Kumar GN, Walle UK, et al. Phase I and pharmacologic study of a 3-hour infusion of paclitaxel followed by cisplatinum and 5-fluorouracil in patients with advanced solid tumors. Clin Cancer Res 1999; 5: 1723–30

    PubMed  CAS  Google Scholar 

  128. Millward MJ, Zalcberg J, Bishop JF, et al. Phase I trial of docetaxel and cisplatin in previously untreated patients with advanced non-small cell lung cancer. J Clin Oncol 1997; 15: 750–8

    PubMed  CAS  Google Scholar 

  129. Obasaju CK, Johnson SW, Rogatko A, et al. Evaluation of carboplatin pharmacokinetics in the absence and presence of paclitaxel. Clin Cancer Res 1996; 2: 549–52

    PubMed  CAS  Google Scholar 

  130. Siddiqui N, Boddy AV, Thomas HD, et al. A clinical and pharmacokinetic study of the combination of carboplatin and paclitaxel for epithelial ovarian cancer. Br J Cancer 1997; 75: 287–94

    Article  PubMed  CAS  Google Scholar 

  131. Huizing MT, Giaccone G, VanWarmerdam LJC, et al. Pharmacokinetics of paclitaxel and carboplatin dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. J Clin Oncol 1997; 15: 317–29

    PubMed  CAS  Google Scholar 

  132. Belani CP, Kearns CM, Zuhowski EG, et al. Phase I trial, including pharmacokinetic and pharmacodynamic correlations, of combination paclitaxel and carboplatin in patients with metastatic non-small-cell lung cancer. J Clin Oncol 1999; 17: 676–84

    PubMed  CAS  Google Scholar 

  133. O’Reilly S, Fleming GF, Baker SD, et al. Phase I trial and pharmacologic trial of sequences of paclitaxel and topotecan in previously treated ovarian epithelial malignancies: a Gynecologic Oncology Group Study. J Clin Oncol 1997; 15: 177–86

    PubMed  Google Scholar 

  134. Zamboni WC, Egorin MJ, Van Echo DA, et al. Pharmacokinetic and pharmacodynamic study of the combination of docetaxel and topotecan in patients with solid tumors. J Clin Oncol 2000; 18: 3288–94

    PubMed  CAS  Google Scholar 

  135. Masuda N, Negoro S, Kudoh S, et al. Phase I and pharmacologic study of docetaxel and irinotecan in advanced non-small-cell lung cancer. J Clin Oncol 2000; 18: 2996–3003

    PubMed  CAS  Google Scholar 

  136. Kennedy MJ, Zahurak ML, Donehower RC, et al. Sequence-dependent hematological toxicity associated with the 3-hour paclitaxel/cyclophosphamide doublet. Clin Cancer Res 1998; 4: 349–56

    PubMed  CAS  Google Scholar 

  137. Kroep JR, Giaccone G, Voorn DA, et al. Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small cell lung cancer. J Clin Oncol 1999; 17: 2190–7

    PubMed  CAS  Google Scholar 

  138. Villalona-Calero MA, Weiss GR, Burris HA, et al. Phase I and pharmacokinetic study of the oral fluoropyrimidine capecitabine in combination with paclitaxel in patients with advanced solid malignancies. J Clin Oncol 1999; 17: 1915–25

    PubMed  CAS  Google Scholar 

  139. Hughes AN, Griffin MJ, Newell DR, et al. Clinical pharmacokinetic and in vitro combination studies of nolatrexed dihydrochloride (AG337, Thymitaq) and paclitaxel. Br J Cancer 2000; 82: 1519–27

    Article  PubMed  CAS  Google Scholar 

  140. Zhou-Pan XR, Sérée E, Zhou X J, et al. Involvement of human liver cytochrome P450 3A in vinblastine metabolism: drag interactions. Cancer Res 1993; 53: 5121–6

    PubMed  CAS  Google Scholar 

  141. Zhou XJ, Zhou-Pan XR, Gauthier T, et al. Human liver microsomal cytochrome P450 3 A isozymes mediated vindesine biotransformation: metabolic-drug interactions. Biochem Pharmacol 1993; 45: 853–61

    Article  PubMed  CAS  Google Scholar 

  142. Toso C, Lindley C. Vinorelbine: a novel vinca alkaloid. Am J Health Syst Pharm 1995; 52: 1287–304

    PubMed  CAS  Google Scholar 

  143. Leveque D, Jehl F. Clinical pharmaco kinetic s of vinorelbine. Clin Pharmacokinet 1996; 31: 184–97

    Article  PubMed  CAS  Google Scholar 

  144. Links M, Watson S, Lethlean K, et al. Vinblastine pharmaco kinetic s in patients with non-small lung cancer given cisplatin. Cancer Invest 1999; 17: 479–85

    Article  PubMed  CAS  Google Scholar 

  145. Rothenberg ML. Topoisomerase I inhibitors: review and update. Ann Oncol 1997; 8: 837–55

    Article  PubMed  CAS  Google Scholar 

  146. Brogden RN, Wiseman LR. Topotecan: a review of its potential in advanced ovarian cancer. Drugs 1998; 56: 709–23

    Article  PubMed  CAS  Google Scholar 

  147. Cunningham D. Current status of colorectal cancer: CPT-11 (irinotecan), atherapeutic innovation. Eur J Cancer 1996; 32ASuppl. 3: 1S–8S

    Article  Google Scholar 

  148. Herben VMM, Ten Bokkel Huinink WW, Beijnen JH. Clinical pharmacokinetics of topotecan. Clin Pharmacokinet 1996; 31: 85–102

    Article  PubMed  CAS  Google Scholar 

  149. Schellens JHM, Creemers GJ, Beijnen JH, et al. Bio-availability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 1995; 73: 1268–71

    Article  Google Scholar 

  150. Stewart CF, Baker SD, Heideman RL, et al. Clinical pharmacodynamics of continuous infusion topotecan in children: systemic exposure predicts hematologic toxicity. J Clin Oncol 1994; 12: 1946–54

    PubMed  CAS  Google Scholar 

  151. Rowinsky EK, Kaufmann SH, Baker SD, et al. Sequences of topotecan and cisplatin: phase I, pharmacologic, and in vitro studies to examine sequence dependence. J Clin Oncol 1996; 14: 3074–84

    PubMed  CAS  Google Scholar 

  152. DeJonge MJA, Loos WJ, Gelderblom H, et al. Phase I pharmacologic study of oral topotecan and intravenous cisplatin: sequence-dependent hematologic side effects. J Clin Oncol 2000; 18: 2104–15

    PubMed  Google Scholar 

  153. Rivory LP, Chatelut E, Canal P, et al. Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. Cancer Res 1994; 54: 6330–3

    PubMed  CAS  Google Scholar 

  154. Gupta E, Lestingi TM, Mick R, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 1994; 54: 3723–5

    PubMed  CAS  Google Scholar 

  155. Chu XY, Kato Y, Ueda K, et al. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res 1998; 58: 5137–43

    PubMed  CAS  Google Scholar 

  156. Rivory LP, Riou JF, Haaz MC, et al. Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res 1996; 56: 3689–94

    PubMed  CAS  Google Scholar 

  157. Sasaki Y, Ohtsu A, Shimada T, et al. Simultaneous administration of CPT-11 and fluorouracil: alteration of the pharmacokinetics of CPT-11 and SN-38 in patients with advanced colorectal cancer. J Natl Cancer Inst 1994; 86: 1096–7

    Article  PubMed  CAS  Google Scholar 

  158. Saltz LB, Kanowitz J, Kemeny NE, et al. Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol 1996; 14: 2959–67

    PubMed  CAS  Google Scholar 

  159. Saltz LB, Spriggs D, Schaaf LJ, et al. Phase I clinical and pharmacologic study of weekly cisplatin combined with weekly irinotecan in patients with advanced solid tumours. J Clin Oncol 1998; 16: 3858–65

    PubMed  CAS  Google Scholar 

  160. DeVore RF, Johnson DH, Crawford J, et al. Phase II study of irinotecan plus cisplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol 1999; 17: 2710–20

    Google Scholar 

  161. DeJonge MJA, Verwey J, De Bruijn P, et al. Pharmaco kinetic, metabolic, and pharmacodynamic profiles in a dose-escalating study of irinotecan and cisplatin. J Clin Oncol 2000; 18: 195–203

    PubMed  Google Scholar 

  162. Wasserman E, Cuvier C, Lokiec F, et al. Combination of oxaliplatin plus irinotecan in patients with gastrointestinal tumors: results of two independent phase I studies with pharmacokinetics. J Clin Oncol 1999; 17: 1751–9

    PubMed  CAS  Google Scholar 

  163. Murry DJ. Comparative clinical pharmacology of cisplatin and carboplatin. Pharmacotherapy 1997; 17 (5 Pt 2): 140S–5S

    PubMed  CAS  Google Scholar 

  164. Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 1999; 17: 409–22

    PubMed  CAS  Google Scholar 

  165. O’Dwyer PJ, Stevenson JB, Johnson SW. Clinical pharmacokinetics and administration of established platinum drugs. Drugs 2000; 59Suppl. 4: 19–27

    Article  PubMed  Google Scholar 

  166. Huang P, Chubb S, Hertel LW, et al. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991; 51: 6110–7

    PubMed  CAS  Google Scholar 

  167. Ruiz van Haperen VWT, Veerman G, Vermorken JB, et al. 2′,2′-difluorodeoxycytidine (gemcitabine) incorporation into RNA and DNA of tumor cell lines. Biochem Pharmacol 1993; 46: 762–6

    Article  PubMed  CAS  Google Scholar 

  168. VanMoorsel CJA, Kroep JR, Pinedo HM, et al. Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. Ann Oncol 1999; 10: 441–8

    Article  PubMed  Google Scholar 

  169. Pérez-Manga G, Lluch A, Alba E, et al. Gemcitabine in combination with doxorubicin in advanced breast cancer: final results of a phase II pharmacokinetic trial. J Clin Oncol 2000; 18: 2545–52

    PubMed  Google Scholar 

  170. Adjei AA, Erlichman C, Sloan JA, et al. Phase I and pharmacologie study of sequences of gemcitabine and the multitargeted antifolate agent in patients with advanced solid tumors. J Clin Oncol 2000; 18: 1748–57

    PubMed  CAS  Google Scholar 

  171. Sikic BI, Fisher GA, Lum BL, et al. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 1997; 40 Suppl.: S13–9

    Article  PubMed  CAS  Google Scholar 

  172. Lum BL, Fisher GA, Brophy NA, et al. Clinical trials of modulation of multidrug resistance. Cancer 1993; 72: 3502–14

    Article  PubMed  CAS  Google Scholar 

  173. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 1990; 42: 155–99

    PubMed  CAS  Google Scholar 

  174. Gottesman MM, Pastan I, Ambudkar SV P-glycoprotein and multidrug resistance. Curr Opin Genet Dev 1996; 6: 610–7

    Article  PubMed  CAS  Google Scholar 

  175. Bradshaw DM, Arceci RJ. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol 1998; 16: 3674–90

    PubMed  CAS  Google Scholar 

  176. Kerr DJ, Graham J, Cummings J, et al. The effect of verapamil on the pharmacokinetics of adriamycin. Cancer Chemother Pharmacol 1986; 18: 239–42

    Article  PubMed  CAS  Google Scholar 

  177. Mross K, Kröger N, Herbst K, et al. Alteration in epirubicin pharmacokinetics and metabolism by dexverapamil: results from a phase II study in patients with metastatic breast cancer. Onkologie 1999; 22: 35–40

    Article  Google Scholar 

  178. Wilson WH, Jamis-Dow C, Bryant G, et al. Phase I and pharmacokinetic study of the multidrug resistance modulator dexverapamil with EPOCH chemotherapy. J Clin Oncol 1995; 13: 1985–94

    PubMed  CAS  Google Scholar 

  179. Berg SL, Tolcher A, O’Shaughnessy JA, et al. Effect of R-verapamil on the pharmacokinetics ofpaclitaxel in womenwith breast cancer. J Clin Oncol 1995; 13: 2039–42

    PubMed  CAS  Google Scholar 

  180. Bartlett NL, Lum BL, Fisher GA, et al. Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 1994; 12: 835–42

    PubMed  CAS  Google Scholar 

  181. Rushing DA, Raber SR, Rodvold KA, et al. The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer. Cancer 1994; 74: 834–41

    Article  PubMed  CAS  Google Scholar 

  182. Lum BL, Kaubisch S, Fisher GA, et al. Effects of high-dose cyclosporine on etoposide pharmacodynamics in a trial to reverse P-glycoprotein (MDR1 gene) mediated drug resistance. Cancer Chemother Pharmacol 2000; 45: 305–11

    Article  PubMed  CAS  Google Scholar 

  183. Toffoli G, Sorio R, Gigante M, et al. Cyclosporin A as a multidrug-resistant modulator in patients with renal cell carcinoma treated with teniposide. Br J Cancer 1997; 75: 715–21

    Article  PubMed  CAS  Google Scholar 

  184. Giaccone G, Linn SC, Welink J, et al. A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 1997; 3: 2005–15

    PubMed  CAS  Google Scholar 

  185. Lee EJ, George SL, Caliguri M, et al. Parallel phase I studies of daunorubicin given with cytarabine and etoposide with or without the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age or older with acute myeloid leukemia: results of cancer and leukemia group B study 9420. J Clin Oncol 1999; 17: 2831–9

    PubMed  CAS  Google Scholar 

  186. Tidefelt U, Liliemark A, Gruber E, et al. P-glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J Clin Oncol 2000; 18: 1837–44

    PubMed  CAS  Google Scholar 

  187. Boote DJ, Dennis IF, Twentyman PR, et al. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol 1996; 14: 610–8

    PubMed  CAS  Google Scholar 

  188. Fracasso PM, Westerveldt P, Fears CA, et al. Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (valspodar), in refractory malignancies. J Clin Oncol 2000; 18: 1124–34

    PubMed  CAS  Google Scholar 

  189. Fischer V, Rodriguez-Gase on A, Heitz F, et al. The multidrug resistance modulator valspodar (PSC833) is metabolized by human cytochrome P450 3A: implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 1998; 26: 802–11

    PubMed  CAS  Google Scholar 

  190. Fedeli L, Colozza M, Boschetti E, et al. Pharmacokinetics of vincristine in cancer patients treated with nifedipine. Cancer 1989; 64: 1805–11

    Article  PubMed  CAS  Google Scholar 

  191. Miller RL, Bukowski R, Budd GT, et al. Clinical modulation of doxorubicin resistance by the cal modulin-inhibitor, trifluoperazine: a phase I/II trial. J Clin Oncol 1988; 6: 880–8

    PubMed  CAS  Google Scholar 

  192. Sridhar KS, Krishan A, Samy TSA, et al.Prochlorperazine as a doxorubicin-efflux blocker: phase I clinical and pharmacokinetics studies. Cancer Chemother Pharmacol 1993; 31: 423–30

    Article  PubMed  CAS  Google Scholar 

  193. Tranchand B,Catimel G, Lucas C, et al. Phase I clinical and pharmacokinetic study of S9788, a new multidrug-resistance reversal agent given alone and in combination with doxorubicin to patients with advanced solid tumors. Cancer Chemother Pharmacol 1998; 41: 281–91

    Article  PubMed  CAS  Google Scholar 

  194. Wurz GT, Soc L, Emshoff VD, et al. Pharmacokinetic analysis of high-dose toremifene in combination with doxorubicin. Cancer Chemother Pharmacol 1998; 42: 363–6

    Article  PubMed  CAS  Google Scholar 

  195. VanZuylen L, Verweij J, Nooter K, et al. Role of intestinal P-glycoprotein in the plasma and fecal disposition of docetaxel in humans. Clin Cancer Res 2000; 6: 2598–603

    PubMed  Google Scholar 

  196. Sparreboom A, Planting AST, Jewell RC, et al. Clinical pharmacokinetics of doxorubicin in combination with GF129018, a potent inhibitor of MDR1 P-glycoprotein. AntiCancer Drugs 1999; 10: 719–28

    Article  PubMed  CAS  Google Scholar 

  197. DeBruin M, Miyake K, Litman T, et al. Reversal of resistance by GF120918 in cell lines expressing the ABC-half-transporter, MXR. Cancer Lett 1999; 146: 117–26

    Article  PubMed  Google Scholar 

  198. Boven E, Van Hattum AH, Hoogsteen I, et al. New analogues of camptothecins: activity and resistance. Ann N Y Acad Sci 2000; 922: 175–7

    Article  PubMed  CAS  Google Scholar 

  199. Schellens JH, Maliepaard M, Scheper RJ, et al. Transport of topoisomerase I inhibitors by the breast cancer resistance protein: potential clinical implications. Ann N Y Acad Sci 2000; 922: 188–94

    Article  PubMed  CAS  Google Scholar 

  200. Sparreboom A, VanAsperen J, Mayer U, et al. Limited oral bio-availability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Nat Acad Sci USA 1997; 94: 2031–5

    Article  PubMed  CAS  Google Scholar 

  201. vanAsperen J, VanTellingen O, Sparreboom A, et al. Enhanced oral bio-availability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 1997; 76: 1181–3

    Article  PubMed  Google Scholar 

  202. Malingreé MM, Meerum Terwogt JH, Beijnen JH, et al. Phase I and pharmacokinetic study of oral paclitaxel. J Clin Oncol 2000; 18: 2468–75

    Google Scholar 

  203. Arboix M, Paz OG, Colombo T, et al. Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J Pharmacol Exp Ther 1997; 281: 1226–30

    PubMed  CAS  Google Scholar 

  204. Burgio DE, Gosland MP, McNamara PJ. Effects of P-glycoprotein modulators on etoposide elimination and central nervous system distribution. J Pharmacol Exp Ther 1998; 287: 911–7

    PubMed  CAS  Google Scholar 

  205. Newell DR. Can pharmacokinetic and pharmacodynamic studies improve cancer chemotherapy? Ann Oncol 1994; 5Suppl. 4: S9–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Epie Boven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boven, E. Pharmacokinetics in Cancer Treatment. Am J Cancer 1, 33–53 (2002). https://doi.org/10.2165/00024669-200201010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200201010-00005

Keywords

Navigation