Skip to main content
Log in

A Novel Predictive Technique for the MHC Class II Peptide-Binding Interaction

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Antigenic peptide is presented to a T-cell receptor through the formation of a stable complex with a Major Histocompatibility Complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide’s capacity to form a stable complex with a given MHC Class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. We have developed a novel predictive technique that uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC Class II peptide complex. This is the 1st structure-based technique, as previous methods have been based on binding data. ROC curves are used to quantify the accuracy of the molecular modeling technique. The novel predictive technique is found to be comparable with the best predictive software currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Germain RN, Hendrix LR. (1991) MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature 353:134–9.

    Article  CAS  Google Scholar 

  2. McFarland BJ, Beeson C. (2002) Binding interactions between peptides and proteins of the class II major histocompatibility complex. Med. Res. Rev. 22: 168–203.

    Article  CAS  Google Scholar 

  3. Madden DR. (1995) The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13:587–622.

    Article  CAS  Google Scholar 

  4. Chelvanayagam G, Easteal S. (1997) Peptides: two-faced, cheating go-betweens? Limits in the cellular immune system. Immunogenetics 46:516–9.

    Article  CAS  Google Scholar 

  5. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. (1996) Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc. Natl. Acad. Sci. U.S.A. 93:734–8.

    Article  CAS  Google Scholar 

  6. Hammer J, Bono E, Gallazzi F, Belunis C, Nagy Z, Sinigaglia F. (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180:2353–8.

    Article  CAS  Google Scholar 

  7. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–9.

    Article  CAS  Google Scholar 

  8. Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J. (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17:555–61.

    Article  CAS  Google Scholar 

  9. Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L. (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14:121–30.

    Article  CAS  Google Scholar 

  10. Brünger AT, Adam PD, Rice LM. (1997) New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 5:325–34.

    Article  Google Scholar 

  11. Hansson T, Oostenbrink C, van Gunsteren WF. (2002) Molecular dynamics simulations. Curr. Opin. Struc. Biol. 12:190–6.

    Article  CAS  Google Scholar 

  12. Murthy VL, Stern LJ. (1997) The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Structure 5:1385–96.

    Article  CAS  Google Scholar 

  13. Kleywegt GJ, Jones TA. (1997) Model-building and refinement practice. Methods Enzymol. 277:208–30.

    Article  CAS  Google Scholar 

  14. Case DA et al. (1999) AMBER 6. San Francisco,CA, Univ. of California.

    Google Scholar 

  15. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson DM, Seibel GL, Kollman PA. (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Physics Communic. 91:1–41.

    Article  CAS  Google Scholar 

  16. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–35.

    Article  CAS  Google Scholar 

  17. Marshall KW, Liu AF, Canales J, Perahia B, Jorgensen B, Gantzos RD, Aguilar B, Devaux B, Rothbard JB. (1994) Role of the polymorphic residues in HLA-DR molecules in allele-specific binding of peptide ligands. J. Immunol. 152:4946–57.

    CAS  PubMed  Google Scholar 

  18. Swets J. (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–93.

    Article  CAS  Google Scholar 

  19. Texier C, Pouvelle S, Busson M, Herve M, Charron D, Menez A, Maillere B. (2000) HLA-DR restricted peptide candidates for bee venom immunotherapy. J. Immunol. 164:3177–84.

    Article  CAS  Google Scholar 

  20. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A. (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 160:3363–73.

    CAS  PubMed  Google Scholar 

  21. Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, Colon SM, Grey HM. (1989) Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc. Natl. Acad. Sci. U.S.A. 86(9):3296–300.

    Article  CAS  Google Scholar 

  22. Gulukota K, Sidney J, Sette A, DeLisi C. (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267:1258–67.

    Article  CAS  Google Scholar 

  23. Zarutskie JA, Sato AK, Rushe MM, Chan IC, Lomakin A, Benedek GB, Stern LJ. (1999) A conformational change in the human major histocompatibility complex protein HLA-DR1 induced by peptide binding. Biochemistry 38:5878–87.

    Article  CAS  Google Scholar 

  24. Foster I, Kesselman C, Tuecke S. (2001) The anatomy of the grid: enabling scalable virtual organizations. Intl. J. Supercomputer Applic. 15(3):1–25.

    Article  Google Scholar 

Download references

Acknowledgments

MN Davies would like to thank the Biotechnology and Biological Sciences Research Council and the Anthony Nolan Research Institute for their financial support. The authors would also like to extend their thanks to Dr Andy Purkiss for his help in setting up the simulations and Dr Paul Travers for his advice on all things immunological.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare E Sansom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, M.N., Sansom, C.E., Beazley, C. et al. A Novel Predictive Technique for the MHC Class II Peptide-Binding Interaction. Mol Med 9, 220–225 (2003). https://doi.org/10.2119/2003-00032.Sansom

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2003-00032.Sansom

Keywords

Navigation