Skip to main content
Log in

Influence of Montmorillonite Nanoclay Content on the Optical, Thermal, Mechanical, and Barrier Properties of Low-Density Polyethylene

  • Published:
Clays and Clay Minerals

Abstract

Although low density polyethylene (LDPE) has long been widely used in packaging applications, some limitations in its use still exist and are due to its relatively poor gas barrier properties and low mechanical strength which can restrict its extensive use for more advanced applications, such as electronic and pharmaceutical packaging. The purpose of this study was to investigate the possibility of using montmorillonite (MMT) nanoclay as a means to enhance the thermal, mechanical, and barrier properties of LDPE prepared via melt extrusion. The level of exfoliated dispersion of the MMT nanoclay in the prepared LDPE-MMT composite was confirmed using transmission electron microscopy (TEM). The relationship between the resulting morphology and the thermal, mechanical, and barrier properties as a function of the MMT content was evaluated. The results showed that incorporating >3 wt.% of MMT nanoclay produced significant changes in the morphology of the LDPE-MMT nanoclay composite in that the segregated matrix adopted an oriented arrangement of exfoliated clay platelets. Thermogravimetric analysis (TGA) showed that the thermal stability of LDPE improved significantly as a result of MMT nanoclay incorporation. Furthermore, differential scanning calorimetry (DSC) analysis indicated that increasing clay content above 3 wt.% effectively reduces the crystallinity of LDPE-MMT composites through the suppression effect. The tensile strength of LDPE increased gradually with an increased content of MMT nanoclay and the maximum value of 16.89 N/mm2 was obtained at 10 wt.% MMT content. This value represents a 40.87% increase relative to the tensile strength of the pristine LDPE. Barrier properties of LDPE and LDPE-MMT nanoclay composites were assessed by examining the permeability with respect to oxygen and water vapor. As the content of MMT nanoclay was increased to 10 wt.%, the permeability of the nanocomposite films to oxygen and water vapor notably decreased to 42.8% and 26.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agarwal, A., Raheja, A., Natarajan, T.S., and Chandra, T.S. (2014) Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innovative Food Science & Emerging Technologies, 26, 424–430.

    Google Scholar 

  • Akbari, B. and Bagheri, R. (2014) Influence of nanoclay on morphology, mechanical properties and deformation mechanism of polystyrene. Polymer-Plastics Technology and Engineering, 53, 156–161.

    Google Scholar 

  • Albdiry, M.T., Yousif, B.F., Ku, H., and Lau, K.T. (2013) A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. Journal of Composite Materials, 47, 1093–1115.

    Google Scholar 

  • Arora, A., Choudhary, V., and Sharma, D.K. (2011) Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites. Journal of Polymer Research, 18, 843–857.

    Google Scholar 

  • Arunvisut, S., Phummanee, S., and Somwangthanaroj, A. (2007) Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites. Journal of Applied Polymer Science, 106, 2210–2217.

    Google Scholar 

  • ASTM D882-02 (2002) Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials, Philadelphia, USA.

  • Ataeefard, M. and Moradian, S. (2011a) Polypropylene/organoclay nanocomposites: Effects of clay content on properties. Polymer-Plastics Technology and Engineering, 50, 732–739.

    Google Scholar 

  • Ataeefard, M. and Moradian, S. (2011b) Surface properties of polypropylene/organoclay nanocomposites. Applied Surface Science, 257, 2320–2326.

    Google Scholar 

  • Azizi, H., Morshedian, J., Barikani, M., and Wagner, M.H. (2010) Effect of layered silicate nanoclay on the properties of silane crosslinked linear low-density polyethylene (LLDPE). Express Polymer Letters, 4, 252–262.

    Google Scholar 

  • Bodaghi, H., Mostofi, Y., Oromiehie, A., Ghanbarzadeh, B., and Hagh, Z.G. (2015) Synthesis of clay-TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. Journal of Applied Polymer Science, 132, 41764(41761–41768).

    Google Scholar 

  • Bumbudsanpharoke, N., Lee, W., and Ko, S. (2017) A comprehensive feasibility study on the properties of LDPE-Ag nanocomposites for food packaging applications. Polymer Composites, 1–9.

    Google Scholar 

  • Chafidz, A., Kaavessina, M., Al-Zahrani, S., and Al-Otaibi, M.N. (2014) Polypropylene/organoclay nanocomposites prepared using a Laboratory Mixing Extruder (LME): Crystallization, thermal stability and dynamic mechanical properties. Journal of Polymer Research, 21, 1–18.

    Google Scholar 

  • Chen, G.M., Qi, Z.N., and Shen, D.Y. (2000) Shear-induced ordered structure in polystyrene/clay nanocomposite. Journal of Materials Research, 15, 351–356.

    Google Scholar 

  • Chen, J.B., Xu, J.Z., Xu, H., Li, Z.M., Zhong, G.J., and Lei, J. (2015) The crystallization behavior of biodegradable poly(- butylene succinate) in the presence of organically modified clay with a wide range of loadings. Chinese Journal of Polymer Science, 33, 576–586.

    Google Scholar 

  • Chen, L., Wong, S.C., and Pisharath, S. (2003) Fracture properties of nanoclay-filled polypropylene. Journal of Applied Polymer Science, 88, 3298–3305.

    Google Scholar 

  • Decker, J.J., Meyers, K.P., Paul, D.R., Schiraldi, D.A., Hiltner, A., and Nazarenko, S. (2015) Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer, 61, 42–54.

    Google Scholar 

  • Deka, B.K. and Maji, T.K. (2010) Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Composites Science and Technology, 70, 1755–1761.

    Google Scholar 

  • Di Maio, E., Iannace, S., Sorrentino, L., and Nicolais, L. (2004) Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer, 45, 8893–8900.

    Google Scholar 

  • Driscoll, R.H. and Paterson, J.L. (1999) Packaging and food preservation. Pp. 687 in: Handbook of Food Preservation (M.S. Rahman, editors). Marcel Dekker, New York.

    Google Scholar 

  • Farhoodi, M. (2016) Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation. Food Engineering Reviews, 8, 35–51.

    Google Scholar 

  • Follain, N., Alexandre, B., Chappey, C., Colasse, L., Mederic, P., and Marais, S. (2016) Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Composites Science and Technology, 136, 18–28.

    Google Scholar 

  • Fu, J. and Naguib, H.E. (2006) Effect of nanoclay on the mechanical properties of PMMA/clay nanocomposite foams. Journal of Cellular Plastics, 42, 325–342.

    Google Scholar 

  • Ganguly, S., Dana, K., Mukhopadhyay, T.K., Parya, T., and Ghatak, S. (2011) Organophilic nano clay: A comprehensive review. Transactions of the Indian Ceramic Society, 70, 189–206.

    Google Scholar 

  • Golebiewski, J., Rozanski, A., Dzwonkowski, J., and Galeski, A. (2008) Low density polyethylene-montmorillonite nanocomposites for film blowing. European Polymer Journal, 44, 270–286.

    Google Scholar 

  • Grim, R.E. (1942) Modern concepts of clay materials. The Journal of Geology, 50, 225–275.

    Google Scholar 

  • Guggenheim, S. and Martin, R. (1995) Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals, 43, 255–256.

    Google Scholar 

  • Gul, S., Kausar, A., Muhammad, B., and Jabeen, S. (2016) Research progress on properties and applications of polymer/clay nanocomposite. Polymer-Plastics Technology and Engineering, 55, 684–703.

    Google Scholar 

  • Guo, J.M., Li, X.Y., Mu, C.D., Zhang, H.G., Qin, P., and Li, D.F. (2013) Freezing-thawing effects on the properties of dialdehyde carboxymethyl cellulose crosslinked gelatin- MMT composite films. Food Hydrocolloids, 33, 273–279.

    Google Scholar 

  • Hemati, F. and Garmabi, H. (2011) Compatibilised LDPE/LLDPE/nanoclay nanocomposites: I. Structural, mechanical, and thermal properties. The Canadian Journal of Chemical Engineering, 89, 187–196.

    Google Scholar 

  • Hillier, S. (2003) Clay Mineralogy. Pp. 139–142 in: Encyclopaedia of Sediments and Sedimentary Rocks (G.V. Middleton, M.J. Church, M. Coniglio, L.A. Hardie, F.J. Longstaffe, editors). Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Homminga, D.S., Goderis, B., Mathot, V.B.F., and Groeninckx, G. (2006) Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration. Polymer, 47, 1630–1639.

    Google Scholar 

  • Huang, H.D., Zhou, S.Y., Ren, P.G., Ji, X., and Li, Z.M. (2015) Improved mechanical and barrier properties of low-density polyethylene nanocomposite films by incorporating hydrophobic graphene oxide nanosheets. RSC Advances, 5, 80739–80748.

    Google Scholar 

  • Kim, S.G., Lofgren, E.A., and Jabarin, S.A. (2013) Dispersion of nanoclays with poly(ethylene terephthalate) by melt blending and solid state polymerization. Journal of Applied Polymer Science, 127, 2201–2212.

    Google Scholar 

  • Kontou, E. and Niaounakis, M. (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer, 47, 1267–1280.

    Google Scholar 

  • Lan, T. (2012) Nanocomposites for food packaging: An overview. Pp. 406–413 in: Bionanotechnology: A Revolution in Food, Biomedical and Health Sciences (D. Bagchi, M. Bagchi, H. Moriyama, F. Shahidi, editors). John Wiley & Son, West Sussex, UK.

    Google Scholar 

  • Landry, V., Blanchet, P., and Riedl, B. (2010) Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring. Progress in Organic Coatings, 67, 381–388.

    Google Scholar 

  • Lange, S., Arroval, T., Saar, R., Kink, I., Aarik, J., and Krumme, A. (2015) Oxygen barrier properties of Al2O3- and TiO2-coated LDPE films. Polymer-Plastics Technology and Engineering, 54, 301–304.

    Google Scholar 

  • LeBaron, P.C., Wang, Z., and Pinnavaia, T.J. (1999) Polymerlayered silicate nanocomposites: An overview. Applied Clay Science, 15, 11–29.

    Google Scholar 

  • Liu, X.H. and Wu, Q.J. (2001) PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer, 42, 10013–10019.

    Google Scholar 

  • Majdzadeh-Ardakani, K., Lofgren, E.A., and Jabarin, S.A. (2014) The effect of particle size distribution on the dispersion of nanoclays in poly(ethylene terephthalate)/clay nanocomposites. Journal of Reinforced Plastics and Composites, 33, 358–368.

    Google Scholar 

  • Majeed, K., Hassan, A., and Abu Bakar, A. (2014) Influence of maleic anhydride-grafted polyethylene compatibiliser on the tensile, oxygen barrier and thermal properties of rice husk and nanoclay-filled low-density polyethylene composite films. Journal of Plastic Film & Sheeting, 30, 120–140.

    Google Scholar 

  • Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Khalil, H.P.S.A., Salema, A.A., and Inuwa, I. (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391–410.

    Google Scholar 

  • Marsh, K. and Bugusu, B. (2007) Food packaging - Roles, materials, and environmental issues. Journal of Food Science, 72, R39–R55.

    Google Scholar 

  • Meri, R.M., Zicans, J., Maksimovs, R., Ivanova, T., Kalnins, M., Berzina, R., and Japins, G. (2014) Elasticity and longterm behavior of recycled polyethylene terephthalate (rPET)/montmorillonite (MMT) composites. Composite Structures, 111, 453–458.

    Google Scholar 

  • Modesti, M., Lorenzetti, A., Bon, D., and Besco, S. (2006) Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions. Polymer Degradation and Stability, 91, 672–680.

    Google Scholar 

  • Monica, A.P., Bernabé, L.R., Karla, A.G.M., Víctor, H.C.R., Miguel, M., Johanna, C., and Álvaro, M. (2014) Low density polyethylene (LDPE) nanocomposites with passive and active barrier properties. Journal of the Chilean Chemical Society, 59, 2442–2446.

    Google Scholar 

  • Morgan, A.B. and Gilman, J.W. (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study. Journal of Applied Polymer Science, 87, 1329–1338.

    Google Scholar 

  • Morgan, G.A. and Griego, O.V. (1998) Easy Use and Interpretation of SPSS for Windows: Answering Research Questions with Statistics. Lawrence Erlbaum Associates Inc., New Jersey, USA.

    Google Scholar 

  • Mudaliar, A., Yuan, Q., and Misra, R. (2006) On surface deformation of melt-intercalated polyethylene-clay nanocomposites during scratching. Polymer Engineering & Science, 46, 1625–1634.

    Google Scholar 

  • Nair, R.R., Hashimi, N.H., and Rao, V.P. (1982) Distribution and dispersal of clay-minerals on the western continentalshelf of India. Marine Geology, 50, M1–M9.

    Google Scholar 

  • Nasiri, A., Peyron, S., Gastaldi, E., and Gontard, N. (2016) Effect of nanoclay on the transfer properties of immanent additives in food packages. Journal of Materials Science, 51, 9732–9748.

    Google Scholar 

  • Noh, M.W. and Lee, D.C. (1999) Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polymer Bulletin, 42, 619–626.

    Google Scholar 

  • Olewnik, E., Garman, K., and Czerwinski, W. (2010) Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. Journal of Thermal Analysis and Calorimetry, 101, 323–329.

    Google Scholar 

  • Panwar, A., Choudhary, V., and Sharma, D.K. (2011) A review: Polystyrene/clay nanocomposites. Journal of Reinforced Plastics and Composites, 30, 446–459.

    Google Scholar 

  • Paul, P., Hussain, S., Bhattacharjee, D., and Pal, M. (2013) Preparation of polystyrene-clay nanocomposite by solution intercalation technique. Bulletin of Materials Science, 36, 361–366.

    Google Scholar 

  • Pavlidou, S. and Papaspyrides, C.D. (2008) A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 33, 1119–1198.

    Google Scholar 

  • Pujala, R.K. (2014) Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs. Springer International Publishing, London.

    Google Scholar 

  • Qi, R.R., Jin, X., and Zhou, C.X. (2006) Preparation and properties of polyethylene-clay nanocomposites by an in situ graft method. Journal of Applied Polymer Science, 102, 4921–4927.

    Google Scholar 

  • Rachtanapun, P. and Rachtanapun, C. (2011) Vacuum packaging. Pp. 861–874 in: Handbook of Frozen Food Processing and Packaging 2nd edition (D-W. Sun, editor). CRC Press, Florida, US

    Google Scholar 

  • Rangasamy, L., Shim, E., and Pourdeyhimi, B. (2011) Structure and tensile properties of nanoclay-polypropylene pylene fibers produced by melt spinning. Journal of Applied Polymer Science, 121, 410–419.

    Google Scholar 

  • Ray, S.S. (2013) Clay-containing Polymer Nanocomposites: From Fundamentals to Real Applications. Elsevier, Oxford, UK.

    Google Scholar 

  • Sadeghipour, H., Ebadi-Dehaghani, H., Ashouri, D., Mousavian, S., Hashemi-Fesharaki, M., and Gahrouei, M.S. (2013) Effects of modified and non-modified clay on the rheological behavior of high density polyethylene. Composites Part B: Engineering, 52, 164–171.

    Google Scholar 

  • Santos, K.S., Demori, R., Mauler, R.S., Liberman, S.A., and Oviedo, M.A.S. (2013) The influence of screw configurations and feed mode on the dispersion of organoclay on PP. Polimeros-Ciencia E Tecnologia, 23, 175–181.

    Google Scholar 

  • Scarfato, P., Incarnato, L., Di Maio, L., Dittrich, B., and Schartel, B. (2016) Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Composites Part B: Engineering, 98, 444–452.

    Google Scholar 

  • Sepet, H., Tarakcioglu, N., and Misra, R.D.K. (2016) Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. Journal of Composite Materials, 50, 3105–3116.

    Google Scholar 

  • Shojaee-Aliabadi, S., Mohammadifar, M.A., Hosseini, H., Mohammadi, A., Ghasemlou, M., Hosseini, S.M., Haghshenas, M., and Khaksar, R. (2014) Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. International Journal of Biological Macromolecules, 69, 282–289.

    Google Scholar 

  • Siengchin, S. (2011) Nano-scale reinforcing and toughening thermoplastics: Processing, structure and mechanical properties Pp. 215–240 in: Nanofibers-Production, Properties and Functional Applications (T. Lin, editor). InTech, Croatia.

    Google Scholar 

  • Silva, B.L., Nack, F.C., Lepienski, C.M., Coelho, L.A.F., and Becker, D. (2014) Influence of intercalation methods in properties of clay and carbon nanotube and high density polyethylene nanocomposites. Materials Research, 17, 1628–1636.

    Google Scholar 

  • Sorrentino, A., Gorrasi, G., and Vittoria, V. (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology, 18, 84–95.

    Google Scholar 

  • Tanniru, M., Yuan, Q., and Misra, R. (2006) On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47, 2133–2146.

    Google Scholar 

  • Uddin, F. (2008) Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39, 2804–2814.

    Google Scholar 

  • Venkatesh, G., Deb, A., Karmarkar, A., and Chauhan, S.S. (2012) Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites. Materials & Design, 37, 285–291.

    Google Scholar 

  • Verghese, K., Crossin, E., and Jollands, M. (2012) Packaging materials. Pp. 211 in: Packaging for Sustainability (K. Verghese, H. Lewis, L. Fitzpatrick, editors). Springer, California, USA.

    Google Scholar 

  • Villarroel, M., Fahl, N., De Sousa, A.M., and de Oliveira, O.B. (2011) Direct esthetic restorations based on translucency and opacity of composite resins. Journal of Esthetic and Restorative Dentistry, 23, 73–87.

    Google Scholar 

  • Vyas, A. and Iroh, J.O. (2014) Thermal behavior and structure of clay/nylon-6 nanocomposite synthesized by in situ solution polymerization. Journal of Thermal Analysis and Calorimetry, 117, 39–52.

    Google Scholar 

  • Wang, J.C., Xu, C., Hu, H., Wan, L., Chen, R., Zheng, H., Liu, F., Zhang, M., Shang, X., and Wang, X. (2011) Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. Journal of Nanoparticle Research, 13, 869–878.

    Google Scholar 

  • Wunderlich, B. and Czornyj, G. (1977) A study of equilibrium melting of polyethylene. Macromolecules, 10, 906–913.

    Google Scholar 

  • Zanetti, M., Lomakin, S., and Camino, G. (2000) Polymer layered silicate nanocomposites. Macromolecular Materials and Engineering, 279, 1–9.

    Google Scholar 

  • Zazoum, B., David, E., and Ngô, A. (2013) LDPE/HDPE/clay nanocomposites: Effects of compatibilizer on the structure and dielectric response. Journal of Nanotechnology, 2013, 138457.

    Google Scholar 

  • Zazoum, B., David, E., and Ngô, A.D. (2014) Structural and dielectric studies of LLDPE/O-MMT nanocomposites. Transactions on Electrical and Electronic Materials, 15, 235–240.

    Google Scholar 

  • Zbik, M.S. and Frost, R.L. (2010) Influence of smectite suspension structure on sheet orientation in dry sediments: XRD and AFM applications. Journal of Colloid and Interface Science, 346, 311–316.

    Google Scholar 

  • Zhong, Y., Janes, D., Zheng, Y., Hetzer, M., and De Kee, D. (2007) Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite films. Polymer Engineering and Science, 47, 1101–1107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonghyuk Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumbudsanpharoke, N., Lee, W., Choi, J.C. et al. Influence of Montmorillonite Nanoclay Content on the Optical, Thermal, Mechanical, and Barrier Properties of Low-Density Polyethylene. Clays Clay Miner. 65, 387–397 (2017). https://doi.org/10.1346/CCMN.2017.064071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2017.064071

Key Words

Navigation