Skip to main content
Log in

Clay-sized minerals in permafrost-affected soils (Cryosols) from king George Island, Antarctica

  • Published:
Clays and Clay Minerals

Abstract

Cryosols from Maritime Antarctica have been less studied than soils from continental areas of Antarctica. In this work X-ray diffraction, difference X-ray diffraction, differential thermal analysis, thermogravimetry, transmission electron microscopy/energy dispersive spectroscopy and selective chemical dissolution were used to characterize the clay fraction of basaltic, acid sulfate and ornithogenic Cryosols from ice-free areas of Admiralty Bay, King George Island. Non-crystalline phases are important soil components and reach >75% of the clay fraction for some ornithogenic soils. Randomly interstratified smectite-hydroxy-Al-interlayered smectite is the main clay mineral of basaltic soils. Kaolinite, chlorite and regularly interstratified illite-smectite predominate in acid sulfate soils. Jarosite is also an important component of the clay fraction in these soils. Crystalline Al and Fe phosphates occur in the clay at sites directly affected by penguin activity and the chemical characteristics of these ornithogenic sites are controlled by highly reactive, non-crystalline Al, Si, Fe and P phases. Chemical weathering is an active process in Cryosols in Maritime Antarctica and is enhanced by the presence of sulfides for some parent materials, and faunal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnhisel, R.I. and Bertsch, P.M. (1989) Chlorites and hydroxy-interlayered vermiculite and smectite. Pp. 730–779 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Bergkraut, V., Singer, A. and Stahr, K. (1994) Palagonite reconsidered: Paracrystalline illite:smectites from regoliths on basic pyroclastics. Clays and Clay Minerals, 42, 582–592.

    Article  Google Scholar 

  • Birkenmajer, K. (2001) Retreat of the Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. Bulletin of the Polish Academy of Sciences. Earth Sciences. 50, 16–29.

    Google Scholar 

  • Blume, H.P., Beyer, L., Kalk, E. and Kuhn, D. (2002) Weathering and soil formation. Pp. 114–138 in: Geoecology of Antarctic Ice-Free Coastal Landscapes (L. Beyer and M. Bölter, editors). Spinger-Verlag, Berlin.

    Google Scholar 

  • Blume, H.P., Chen, J., Kalk, E. and Kuhn, D. (2004) Mineralogy and weathering of Antarctic Cryosols. Pp. 415–426 in: Cryosols — Permafrost Affected Soils (J. Kimble, editor). Springer-Verlag, Berlin.

    Google Scholar 

  • Bockheim, J.G. and Tarnocai, C. (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma, 81, 281–293.

    Article  Google Scholar 

  • Borchardt, G. (1989) Smectites. Pp. 675–718 in: Minerals in Soil Environments (J. B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Brindley, G.W and Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.

    Google Scholar 

  • Campbell, I.B and Claridge, G.G.C. (1987) Antarctica: Soils, Weathering Processes and Environment. Elsevier, Amsterdam, 368 pp.

    Google Scholar 

  • Campbell, I.B and Claridge, G.G.C. (2004a) Cryosols in the extremely arid Transarctic Mountains Region of Antarctica. Pp. 391–414 in: Cryosols — Permafrost Affected Soils (J. Kimble, editor). Springer-Verlag, Berlin.

    Google Scholar 

  • Campbell, I.B and Claridge, G.G.C. (2004b) Weathering processes in arid Cryosols. Pp. 447–458 in: Cryosols — Permafrost Affected Soils (J. Kimble, editor). Springer-Verlag, Berlin.

    Google Scholar 

  • Campbell, A.S. and Schwertmann, U. (1985) Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction. Clay Minerals, 20, 515–519.

    Article  Google Scholar 

  • Dahlgren, R.A. (1994) Quantification of allophane and imogolite. Pp. 430–448 in: Quantitative Methods in Soil Mineralogy (J.E. Amonette and L.W. Zelazny, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Doner, H.E. and Lynn, W.C. (1989) Carbonates, Halide, Sulfate, and Sulfide Minerals. Smectite. Pp. 279–324 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Drees, L.R., Wilding, L.P., Smeck N.E. and Senkayi, A.L. (1989) Silica in soils: quartz and disordered silica polymorphs. Pp. 914–965 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison.

    Google Scholar 

  • Egli, M., Mirabella, A. and Fitze, P. (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps. Geoderma, 104, 145–175.

    Article  Google Scholar 

  • EMBRAPA — Centro Nacional de Pesquisa de Solos (1997) Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solos, Rio de Janeiro, 212 pp.

    Google Scholar 

  • Farmer, V.C., Fraser, A.R. and Tait, J.M. (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochimica et Cosmochimica Acta, 43, 1417–1420.

    Article  Google Scholar 

  • Gardolinski, J.E., Wypych, F. and Cantao, M.P. (2001) Esfoliação e hidratação da caulinita após intercalação com ureia. Química Nova, 24, 767–775.

    Article  Google Scholar 

  • Gee, G.W. and Bauder, J.W. (1986) Particle-size analysis. Pp. 383–412 in: Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (A. Klute, editor). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Jackson, M.L. (1979) Soil Chemical Analysis — Advanced Course. Prentice-Hall, Madison, Wisconsin, 895 pp.

    Google Scholar 

  • Jackson, M.L., Lim, C.H. and Zelazny, L.W. (1986) Oxides, hydroxides, and aluminosilicates. Pp. 101–150 in: Methods of Soil Analysis Part 1: Physical and Mineralogical Methods (A. Klute, editor). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Jeong, G.Y. and Yoon, H.I. (2001) The origin of clay minerals in soils of King George Island, South Shetlands Islands, West Antarctica, and its implications for the clay-mineral composition of marine sediments. Journal of Sedimentary Research, 71, 833–842.

    Article  Google Scholar 

  • Kelly, W.C. and Zumberge, J.H. (1961) Weathering of a quartz diorite at Marble Point, McMurdo Sound, Antarctica. Journal of Geology, 69, 433–446.

    Article  Google Scholar 

  • Melo, V.F., Novais, R.F., Schaefer, C.E.G.R., Fontes, M.P.F. and Singh, B. (2002a) Mineralogia das frações areia, silte e argila de sedimentos do Grupo Barreiras no município de Aracruz, estado do Espírito Santo. Revista Brasileira de Ciência do Solo, 26, 22–35.

    Google Scholar 

  • Melo, V.F., Schaefer, C.E.G.R., Novais, R.F., Singh, B. and Fontes, M.P.F. (2002b) Potassium and magnesium in clay minerals of some Brazilian soils as indicated by a sequential extraction procedure. Communication in Soil Science and Plant Analysis, 33, 2203–2225.

    Article  Google Scholar 

  • Myrcha, A., Pietr, S.J. and Tatur, A. (1985) The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island. Pp. 156–163 in: Antarctic Nutrient Cycles and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, editors). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Nriagu, J.O. and Moore, P.B. (1984) Phosphate Minerals. Springer-Verlag, Berlin, 442 pp.

    Book  Google Scholar 

  • Ostroumov, V. (2004) Physico-chemical processes in cryogenic soils. Pp. 347–365 in: Cryosols — Permafrost Affected Soils (J. Kimble, editor). Springer-Verlag, Berlin.

    Google Scholar 

  • Parfitt, R.L. (1990) Allophane in New Zealand — areview. Australian Journal of Soil Research, 28, 343–360.

    Article  Google Scholar 

  • Parfitt, R.L. and Kimble, J.M. (1989) Conditions for formation of allophane in soils. Soil Science Society of America Journal, 53, 971–977.

    Article  Google Scholar 

  • Parfitt, R.L. and Wilson, A.D. (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Catena Supplement, 7, 1–8.

    Google Scholar 

  • Sawhney, B.L. (1989) Interstratification in layer silicates. Pp. 789–824 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Schulze, D.G. (1994) X-ray diffraction analysis of soil minerals. Pp. 412–429 in: Quantitative Methods in Soil Mineralogy (J. E. Amonette and L.W. Zelazny, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Schwertmann, U. (1973) Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science, 53, 244–246.

    Article  Google Scholar 

  • Simas, F.N.B., Schaefer, C.E.R.G., Albuquerque Filho, M.R., Melo, V.F., Michel, R.F.M., Pereira, V.V. and Gomes, M.R.M. (2005) Pedogenesis and selected mineralogical and micropedological attributes of ornithogenic Cryosols in Maritime Antarctica: phosphatization as a soil-forming process. Geoderma (in review).

  • Smith, B.F.L. (1994) Characterization of poorly ordered minerals by selective chemical methods. Pp. 333–353 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (M.J. Wilson, editor). Chapman & Hall, London.

    Chapter  Google Scholar 

  • Środoń, J. and Eberl, D.D. (1984) Illite. Pp. 495–539 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.

    Chapter  Google Scholar 

  • Tan, K.B., Hajek, B.F. and Barshad, I. (1986) Thermal analysis techniques. Pp. 151–183 in: Methods of Soil Analysis — Part I: Physical and Mineralogical Methods (A. Klute, editor). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Tatur, A. (1989) Ornithogenic soils of the maritime Antarctic. Polish Polar Research, 4, 481–532.

    Google Scholar 

  • Tatur, A. and Barczuk, A. (1985) Ornithogenic phosphates on King George Island, Maritime Antarctic. Pp. 163–169 in: Antarctic Nutrient Cycles and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, editors). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Tatur, A. and Myrcha, A. (1993) Ornithogenic soils. Pp. 161–165 in: The Antarctic Coastal Ecosystem of Admiralty Bay (S. Rakusa-Suszczewski, editor). Polish Academy of Sciences, Warsaw.

    Google Scholar 

  • Tatur, A., Myrcha, A. and Niegodzisz, J. (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biology, 17, 405–417.

    Article  Google Scholar 

  • Van Vliet-Lanoë, B., Fox, C.A. and Gubin, S.V. (2004) Micromorphology of Cryosols. Pp. 365–391 in: Cryosols — Permafrost-affected Soils (J.M. Kimble, editor). Springer-Verlag, Berlin.

    Google Scholar 

  • Wada, K. (1989) Allophane and imogolite. Pp. 1052–1081 in: Minerals in Soil Environments (J.B. Dixon and S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 7–25.

    Article  Google Scholar 

  • Yeomans, J.C. and Bremner, J.M. (1988) A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19, 1467–1476.

    Article  Google Scholar 

  • Yong, I.L., Lim, H.S and Yoon, H.I. (2004) Geochemistry of soils of King George Island, South Shetlands Islands, West Antarctica: Implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta, 68, 4319–4333.

    Article  Google Scholar 

  • Yoshinaga, N. (1986) Mineralogical characteristics. II. Clay minerals. Pp. 41–56 in: Ando Soils in Japan (K. Wada, editor). Kyushu University Press, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe N. B. Simas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F. et al. Clay-sized minerals in permafrost-affected soils (Cryosols) from king George Island, Antarctica. Clays Clay Miner. 54, 721–736 (2006). https://doi.org/10.1346/CCMN.2006.0540607

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2006.0540607

Key Words

Navigation