Skip to main content
Log in

Refinement of the Crystal Structure of Cronstedtite-3T

  • Published:
Clays and Clay Minerals

Abstract

The crystal structure of cronstedtite-3T from Kutná Hora (Bohemia, Czechoslovakia), space group P31, was refined to Rw(all) = 3.1% for 1336 independent diffractions. There are two and three independent tetrahedral and octahedral positions, respectively, in this structure. The tetrahedra are occupied by 0.75 Si and 0.25 Fe while the octahedra are uniformly occupied by Fe. The refinement process was hindered by two problems: a “strong” superposition structure (all atoms of the octahedral sheets, i.e., ÷ 70% of the total diffraction power contribute almost solely to the family diffractions with mod(h–k, 3) = 0), and a slight disorder of the investigated crystal. The first problem was resolved by a preliminary block-diagonal refinement procedure where the atoms coinciding in the superposition structure were separated into individual blocks. The second problem was resolved by including two scale factors into the final full-matrix refinement: one for family diffractions, the other for the remaining ones which are characteristic for this polytype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W. 1969. Polytypism of trioctahedral 1:1 layer silicates. Clays & Clay Miner. 17: 355–371.

    Article  Google Scholar 

  • Clegg, W. 1981. Faster data collection without loss of precision. An extension of the learnt profile method. Acta Crys-tallog. A37: 22–28.

    Article  Google Scholar 

  • Cromer, D. T., and J. B. Mann. 1968. X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallog. A24: 321–324.

    Article  Google Scholar 

  • Dornberger-Schiff, K. 1964. Grundzüge einer Theorie der OD-Strukturenaus Schichten. Abh. Dtsch. Akad. Wiss. Berlin, Kl.f.Chem.. 3. 107 pp.

    Google Scholar 

  • Dornberger-SchifF, K., and S. Ďurovič. 1975a. OD interpretation of kaolinite-type structures—I: Symmetry of kaolinite packets and their stacking possibility. Clays & Clay Miner. 23: 219–229.

    Article  Google Scholar 

  • Dornberger-Schiff, K., and S. Ďurovič. 1975b. OD interpretation of kaolinite-type structures—II: The regular poly-types (MDO polytypes) and their derivation. Clays & Clay Miner. 23: 231–246.

    Article  Google Scholar 

  • Ďurovič, S. 1979. Desymmetrization of OD structures. Kristall und Technik 14: 1047–1053.

    Article  Google Scholar 

  • Ďurovič, S. 1981. OD-Charakter, Polytypie und Identifikation von Schichtsilikaten. Fortschr. Miner. 59: 191–226.

    Google Scholar 

  • Ďurovič, S. 1992. Layer stacking in general polytypie structures. In International Tables for Crystallography, Vol. C. A. J. C. Wilson, ed. Dordrecht/Boston/London: Kluwer Academic Publications, 667–680.

    Google Scholar 

  • Fichtner, K. 1977. Zur Symmetriebeschreibung von OD-Strukturen durch Brandtsche und Ehresmannsche Gruppoide. Beitr. z. Algebra und Geometrie 6: 71–99.

    Google Scholar 

  • Franzini, M. 1969. The A and B mica layers and the crystal structure of sheet silicates. Contr. Min. Petrol. 21: 203–224.

    Article  Google Scholar 

  • Geiger, C. A., D. L. Henry, S. W. Bailey, and J. J. Maj. 1983. Crystal structure of cronstedtite-2H2. Clays & Clay Miner. 31: 97–108.

    Article  Google Scholar 

  • Mikloš, D. 1975. Symmetry and polytypism of trioctahedral kaolin-type minerals: Ph.D. thesis. Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava (in Slovak).

    Google Scholar 

  • Mikloš, D., and S. Ďurovič. 1978. Desymmetrization of trioctahedral kaolin-type minerals. Acta Crystallog. A34: S9.

    Google Scholar 

  • Petříček, V., and V. Malý. 1988. The SDS system. Program package for X-ray structure determination. Institute of Physics, Czechoslovak Academy of Sciences.

    Google Scholar 

  • Radoslovich, E. W. 1961. Surface symmetry and cell dimension of layer-lattice silicates. Nature 191: 67–68.

    Article  Google Scholar 

  • Steadman, R. 1964. The structure of trioctahedral kaolin-type silicates. Acta Crystallog. 17: 924–927.

    Article  Google Scholar 

  • Steadman, R., and P. M. Nuttall. 1963. Polymorphism in cronstedtite. Acta Crystallog. 16: 1–8.

    Article  Google Scholar 

  • Steadman, R., and P. M. Nuttall. 1964. Further polymorphism in cronstedtite. Acta Crystallog. 17: 404–406.

    Article  Google Scholar 

  • Templeton, D. H., and L. K. Templeton. 1978. AGNOST C. University of California at Berkeley, Berkeley.

    Google Scholar 

  • Weiss, Z., M. Rieder, and M. Chmielová. 1992. Deformation of coordination polyhedra and their sheets in phyllosilicates. Eur. J. Mineral. 4: 665–682.

    Article  Google Scholar 

  • Weiss, Z., M. Rieder, M. Chmielová, and J. Krajícek. 1985. Geometry of the octahedral coordination in micas: A review of refined structures. Amer. Mineral. 70: 747–757.

    Google Scholar 

  • Zvyagin, B. B. 1967. Electron Diffraction Analysis of Clay Mineral Structures. New York: Plenum Press. 364 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smrčok, Ľ., Ďurovič, S., Petříček, V. et al. Refinement of the Crystal Structure of Cronstedtite-3T. Clays Clay Miner. 42, 544–551 (1994). https://doi.org/10.1346/CCMN.1994.0420505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1994.0420505

Key Words

Navigation