Skip to main content
Log in

Morphology, Texture, and Microstructure of Halloysitic Soil Clays as Related to Weathering and Exchangeable Cation

  • Published:
Clays and Clay Minerals

Abstract

This paper aims at characterizing the morphology, texture, and microstructure of three hydrated kaolin rich clays (f > 0.2 μm) from volcanic soils. These clays represent a weathering sequence in which CEC, halloysite content with respect to kaolinite, as well as smectite content in the halloysite-smectite mixed-layer clays decrease with increased weathering. The clay samples were made homoionic (K+ or Mg2+) and hydrated under a low suction pressure (3.2 kPa). After replacing water by a resin, ultrathin sections were cut and examined by TEM. Particle shape varies with increased weathering, as follows: spheroids → tubes → platelets. Higher aggregation and dispersion are observed by TEM after Mg2+ and K+ saturation, respectively, at two levels of the clay-water system organization: intraparticle and interparticle. The microstructure variations induced by the nature of the exchangeable cation become less pronounced with decreasing layer charge of the 2:1 layers. They are thus related here to the presence of smectite layers localized in the halloysite habitus, mostly at the particle periphery. These results show that small amounts of smectite largely affect the organization of clays rich in kaolins at a high water content, and that K+ behaves here as a dispersing ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton, O. and Rouxhet, P. G. (1977) Note on the intercalation of kaolinite, dickite and halloysite by dimenthyl-sulfoxide: Clays & Clay Minerals 25, 259–263.

    Article  Google Scholar 

  • Bailey, S. W. (1990) Halloysite—A critical assessment: in Proc. 9th Int. Clay Conf. Strasbourg, 1989, V. C. Farmer and Y. Tardy, eds., Sci. Géol. Mém. 86, 89–98.

    Google Scholar 

  • Bartoli, F., Burtin, G., and Herbillon, A. J. (1991) Disaggregation and clay dispersion of oxisols: Na resin, a recommended methodology: Geoderma 49, 307–377.

    Article  Google Scholar 

  • Ben Rhaïem, H., Pons, C. H., and Tessier, D. (1987) Factors affecting the microstructure of smectites: Role of cation and history of applied stress: Proc. 8th Int. Clay Conf. Denver, 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 292–297.

    Google Scholar 

  • Blakemore, L. C. (1981) Acid oxalate extractable iron, aluminum, and silicon: Circular letter n°5, appendix 1, ICOM-AND, New Zealand Soil Bureau, Lower Hutt, New Zealand.

    Google Scholar 

  • Churchman, G. I., Whitton, J. S., Claridge, G. C. C., and Theng, B. K. G. (1984) Intercalation method for differentiating halloysite from kaolinite: Clays & Clay Minerals 32, 241–248.

    Article  Google Scholar 

  • Delvaux, B., Herbillon, A. J., and Vielvoye, L. (1989) Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon. Taxonomic, mineralogical and agronomic implications: Geoderma 45, 375–388.

    Article  Google Scholar 

  • Delvaux, B., Herbillon, A. J., Dufey, J. E., and Vielvoye, L. (1990a) Surface properties and clay mineralogy of hydrated halloysitic soil clays. I: Existence of interlayer K+ specific sites: Clay Miner. 24, 617–630.

    Article  Google Scholar 

  • Delvaux, B., Herbillon, A. J., Vielvoye, L., and Mestdagh, M. M. (1990b) Surface properties and clay mineralogy of hydrated halloysitic soil clays. II: Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays: Clay Miner. 25, 141–160.

    Article  Google Scholar 

  • Delvaux, B., Herbillon, A. J., Dufey, J. E., Burtin, G., and Vielvoye, L. (1988) Adsorption sélective du potassium par certaines halloysites ( 10 Å) de sols tropicaux développés sur roches volcaniques. Signification minéralogique: C.R. Acad. Sci. Paris, T. 307, série II, 311–317.

    Google Scholar 

  • Dixon, J. B. (1989) Kaolin and serpentine group minerals: in Minerals in Soil Environments, J. B. Dixon and S. B. Weed, eds., Soil Science Society of America Book Series n°l, 467–526.

    Google Scholar 

  • Farmer, V. C. (1964) The Infrared Spectra of Minerals: Mineralogical Society, London.

    Google Scholar 

  • Kirkman, J. H. (1977) Possible structure of halloy site disks and cylinders observed in some New Zealand rhyolitic teph-ras: Clay Miner. 12, 199–216.

    Article  Google Scholar 

  • Kirkman, J. H. (1981) Morphology and structure of halloy-site in New Zealand tephras: Clays & Clay Minerals 29, 1–9.

    Article  Google Scholar 

  • Kohyama, N., Fukushima, K., and Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell: Clays & Clay Minerals 26, 25–40.

    Article  Google Scholar 

  • Kohyama, N., Fukushima, K., and Fukami, A. (1982) Interlayer hydrates and complexes of clay minerals observed by electron microscopy using an environmental cell: in Proc. 7th Int. Clay Conf. Bologna and Pavia, 1981, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 373–384.

    Google Scholar 

  • Mackenzie, R. C. (1952) A micromethod for determination of cation exchange capacity of clays: Clay Miner. Bull. 1, 203–205.

    Article  Google Scholar 

  • Mehra, O. P. and Jackson, M. L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate: Clays & Clay Minerals 5, 317— 327.

    Google Scholar 

  • Nagasawa, K. and Miyazaki, S. (1976) Mineralogical properties of halloysite as related to its genesis: in Proc. 6th Int. Conf. Mexico City, 1975, S. W. Bailey, ed., Wilmette, Illinois, 256–265.

    Google Scholar 

  • Parham, W. E. (1969) Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering: Clays & Clay Minerals 17, 13–22.

    Article  Google Scholar 

  • Parker, T. W. (1969) A classification of kaolinites by infrared spectroscopy: Clay Miner. 8, 135–141.

    Article  Google Scholar 

  • Quantin, P. (1990) Specficity of the halloysite-rich tropical or subtropical soils: Transactions 14th International Congress of Soil Science, Kyoto, 1990, vol. VII, International Society of Soil Science, 16–21.

    Google Scholar 

  • Quantin, P. (1991) Les sols de l’archipel volcanique des Nouvelles-Hébrides (Vanuatu). Etude de la pédogenèse initiale en milieu tropical: Thèse, U.E.R. des Sciences de la Vie et de la Terre, Institut de Géologie, Strasbourg.

    Google Scholar 

  • Quantin, P., Gautheyrou, J., and Lorenzoni, P. (1988) Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico’s Volcano, Italy: Clay Miner. 23, 423–437.

    Article  Google Scholar 

  • Rouiller, J., Burtin, G., and Souchier, B. (1972) La dispersion des sols dans l’analyse granulométrique. Méthode utilisant les résines échangeuses d’ions: Bulletin ENSAIA Nancy XIV, 193–205.

    Google Scholar 

  • Saigusa, M., Shoji, S., and Kato, T. (1978) Origin and nature of halloysite in Ando soils from Towada tephra, Japan: Geoderma 20, 115–129.

    Article  Google Scholar 

  • Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes. Morphology and composition of halloysite: in Proc. 7th Int. Clay Conf, Bologna and Pavia, 1981, H. van Olphen and F. Veniale, eds., Developments in Sedimentology 27, 573–584.

    Google Scholar 

  • Tessier, D. (1984) Etude expérimentale de l’organisation des matériaux argileux: Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation: Thèse Univ. Paris VII, INRA Versailles.

    Google Scholar 

  • Tessier, D. (1987) Identification of clays. Data from investigations with strongly hydrated systems: in Methodology in Soil-K Research, Proc. 20th Colloquium Int. Potash Institute, International Potash Institute, Bern, Switzerland, 45–63.

    Google Scholar 

  • Tessier, D. (1990) Behaviour and microstructure of clay minerals: in Soil Colloids and Their Associations in Aggregates, Ghent, 1984, M. F. De Boodt, M. H. B. Hayes, and A. J. Herbillon, eds., NATO ASI, Series B: Physics 215, 387–415.

    Article  Google Scholar 

  • Tessier, D. and Berner, J. (1979) Utilisation de la microscopie électronique à balayage dans l’étude des sols. Observation de sols humides soumis à différents pF: Science du Sol 1, 67–82.

    Google Scholar 

  • Tessier, D. and Pedro, G. (1987) Mineralogical characterization of 2:1 clays in soils: Importance of the clay texture: in Proc. 8th Int. Clay Conf, Denver, 1985, L. G. Schultz, H. van Olphen, and F. A. Mumpton, eds., The Clay Minerals Society, Bloomington, Indiana, 78–84.

    Google Scholar 

  • Touret, O., Pons, C. H., Tessier, D., and Tardy, Y. (1990) Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau: Clay Miner. 25, 217–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delvaux, B., Tessier, D., Herbillon, A.J. et al. Morphology, Texture, and Microstructure of Halloysitic Soil Clays as Related to Weathering and Exchangeable Cation. Clays Clay Miner. 40, 446–456 (1992). https://doi.org/10.1346/CCMN.1992.0400409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1992.0400409

Key Words

Navigation