Skip to main content

Advertisement

Log in

Domain Segregation in Ni-Fe-Mg-Smectites

  • Published:
Clays and Clay Minerals

Abstract

The first stage of lateritic weathering of pyroxenes in the Niquelandia area, Brazil, leads either to Fe-rich products or to a phyllosilicate clay. In relatively unfractured parent rock the phyllosilicate clay contains Ni-rich smectites, the atomic ratio of Ni: octahedral cations ranging from 0.3 to 0.5. These smectites were studied by polarized light microscopy, X-ray powder diffraction (XRD), transmission electron microscopy, and electron microprobe, and infrared, optical absorption, Mössbauer, and extended X-ray absorption fine-structure (EXAFS) spectroscopy. The chemical composition of the smectite is constant on the optical microscope scale even to the smallest analyzed particles (3000 A in diameter and about 75 Å thick). From XRD data the mineral is principally a swelling, trioctahedral smectite; however, some kerolite-pimelite-like layers are present, and a weak 06,33 reflection indicates the presence of a small amount of a dioctahedral phase. Mössbauer results show that all Fe cations are Fe3+ in octahedral sites. The structural formula of the smectite is: (Ca0.01K0.05)(Al0.17Fe0.5Mg0.48Ni1.47Cr0.02)(Si3.92Al0.08)O10(OH)2 The results obtained from all the above methods suggest that in the smectites Ni, and, perhaps, a small amount of Mg are clustered in pimelite-like domains (or layers), whereas Fe and some Al are clustered in nontronite-like domains (or layers). Most selected-area electron diffraction patterns exhibit continuous or punctuated (hk) rings, indicating that particles contain several stacked layers. The patterns of some thin particles, however, suggest dioctahedral layers having trans-octahedral vacancies, such as in the Garfield, Washington, nontronite. Thus, the Ni-Fe-Mg-smectite, which seemingly is homogeneous, actually consists of mixed trioctahedral and dioctahedral layers or domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bart, J. C., Burriesci, N., Cariati, F., Micera, G., and Gessa, C. (1980) Spectroscopic investigation of iron distribution in some bentonites from Sardinia: Clays & Clay Minerals 28, 233–236.

    Article  Google Scholar 

  • Berner, R. A. and Schott, J. (1982) Mechanisms of pyroxene and amphibole weathering. II. Observations of soil grains: Amer. J. Sci. 282, 1214–1231.

    Article  Google Scholar 

  • Besson, G., Bookin, A. S., Dainyak, L. C., Rautureau, M., Tsipursky, S. I., Tchoubar, C., and Drits, U. A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronite: J. Appl. Crystallogr. 16, 374–383.

    Article  Google Scholar 

  • Bonnin, D., Calas, G., Suquet, H., and Pezerat, H. (1985) Intracrystalline distribution of Fe3 in Garfield nontronite: A spectroscopic study: Phys. Chem. Minerals 12, 55–64.

    Google Scholar 

  • Bosio, N. J., Hurst, V. J., and Smith, R. L. (1975) Nickeliferous nontronite, a 15 Å garnierite, at Niquelandia, Goias, Brazil: Clay Miner. 23, 400–403.

    Article  Google Scholar 

  • Brindley, G. W., Bish, D. L., and Wan, H. M. (1979) Compositions, structure and properties of nickel-containing minerals in the kerolite-pimelite series: Amer. Mineral. 64, 615–625.

    Google Scholar 

  • Calas, G., Basset, W. A., Petiau, J., Steinberg, M., Tchoubar, D., and Zarka, A. (1984) Mineralogical applications of synchrotron radiation: Phys. Chem. Minerals 11, 17–36.

    Article  Google Scholar 

  • Coey, J. M. D. (1980) Clay minerals and their transformations studied with nuclear techniques: The contribution of Mössbauer spectroscopy: Atomic Energy Review 18, 73–124.

    Google Scholar 

  • Coey, J. M. D., Chukhrov, F. V., and Zvyagin, B. B. (1984) Cation distribution, Mössbauer spectra and magnetic properties of ferri-pyrophyllite: Clays & Clay Minerals 32, 198–204.

    Article  Google Scholar 

  • Colin, F. (1984) Etude petrologique des altérations de pyroxŋite du gisement nickellifère de Niquelândia (Brésil): Thèse 3è cycle, Univ. Paris VII, Paris, 136 pp.

    Google Scholar 

  • Colin, F., Noack, Y., Trescases, J. J., and Nahon, D. (1985) L’altération latéritique débutante des pyroxénites de Jacuba, Niquelândia, Brésil: Clay Miner. 20, 93–113.

    Article  Google Scholar 

  • Decarreau, A. (1981) Cristallogenèse à basse température de smectites trioctaédriques par vieillissement de coprécipités silicométalliques: C.R. Acad. Sci. Paris D 292, 61–64.

    Google Scholar 

  • Decarreau, A. (1983) Etude expérimental de la cristallogenèse des smectites. Mesures des coefficients de partage smectite trioctaédrique-solution aqueuse pour les métaux M2+ de la première série de transition: Sci. Géol. Mém. 74, 1–185.

    Google Scholar 

  • Eggleton, R. A. and Bolland, J. W. (1982) Weathering of enstatite to talc through a sequence of transitional phases: Clays & Clay Minerals 30, 11–20.

    Article  Google Scholar 

  • Gerard, P. and Herbillon, A. J. (1983) Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series: Clays & Clay Minerals 31, 143–151.

    Article  Google Scholar 

  • Goodman, B. A. (1978) The Mössbauer spectra of nontronites: Consideration of an alternative assignment: Clays & Clay Minerals 26, 176–177.

    Article  Google Scholar 

  • Goodman, B. A., Russell, J. D., Fraser, A. R., and Woodhams, F. W. D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite: Clays & Clay Minerals 24, 53–59.

    Article  Google Scholar 

  • Heller, L., Farmer, V. C., Mackenzie, R. C., Mitchel, B. D., and Taylor, H. F. W. (1962) The dehydroxylation and rehydroxylation of trimorphic dioctahedral clay minerals: Clay Miner. Bull. 5, 56–72.

    Article  Google Scholar 

  • Heller-Kallai, L. and Rosenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy: Phys. Chem. Minerals 7, 223–238.

    Article  Google Scholar 

  • Manceau, A. and Calas, G. (1986) Nickel-bearing clay minerals. 2. X-ray absorption study of Ni-Mg distribution: Clay Miner. 21, 341–360.

    Article  Google Scholar 

  • Manceau, A., Calas, G., and Decarreau, A. (1985) Nickel-bearing clay minerals. I. Optical study of nickel crystal chemistry: Clay Miner. 20, 367–387.

    Article  Google Scholar 

  • Nahon, D. and Colin, F. (1982) Chemical weathering of orthopyroxenes under lateritic conditions: Amer. J. Sci. 282, 1232–1243.

    Article  Google Scholar 

  • Paquet, H., Duplay, J., and Nahon, D. (1982) Variations in the composition of phyllosilicate monoparticles in a weathering profile of ultrabasic rocks: in Proc. Int. Clay Conf., Bologna, Pavia, 1981, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 595–603.

    Google Scholar 

  • Proust, D. (1983) Mécanisme de l’altération supergène des roches basiques. Etudes des arènes d’orthoamphibolites du Limousin et de glaucophanite de l’île de Groix, Morbihan: These Sci., Univ. Poitiers, France, 197 pp.

    Google Scholar 

  • Raoux, D., Petiau, J., Bonnot, P., Calas, G., Fontaine, A., Lagarde, P., Levitz, P., Loupias, G., and Sadoc, A. (1980) L’EXAFS appliqué aux déterminations structurales de milieux désordonnés: Rev. Phys. Appl. 15, 1079–1094.

    Article  Google Scholar 

  • Rozenson, I. and Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites: Clays & Clay Minerals 25, 94–101.

    Article  Google Scholar 

  • Russell, J. D., Farmer, V. C, and Velde, B. (1970) Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infrared spectra: Mineral. Mag. 37, 870–879.

    Article  Google Scholar 

  • Serratosa, J. M. (1960) Dehydratation studies by IR spectroscopy: Amer. Mineral. 45, 1101–1104.

    Google Scholar 

  • Teo, B. K. and Lee, P. A. (1980) Ab initio calculation of amplitude and phase function for extended X-ray absorption fine structure (EXAFS) spectroscopy: J. Amer. Chem. Soc. 101, 2815–2830.

    Article  Google Scholar 

  • Weaver, C. E. and Pollard, L. D. (1973) 1973 Elsevier, Amsterdam, 213 pp.

    Google Scholar 

  • Wiewiora, A., Dubinska, E., and Iwasinska, I. (1982) Mixedlayering in Ni-containing talc-like minerals from Szklary, Lower Silesia, Poland: In Proc. Int. Clay Conf., Bologna, Pavia, 1981, H. van Olphen and F. Veniale, eds., Elsevier, Amsterdam, 111–126.

    Google Scholar 

  • Wilkins, R. W. T. and Ito, J. (1967) Infrared spectra of some synthetic talcs: Amer. Mineral. 52, 1649–1661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decarreau, A., Colin, F., Herbillon, A. et al. Domain Segregation in Ni-Fe-Mg-Smectites. Clays Clay Miner. 35, 1–10 (1987). https://doi.org/10.1346/CCMN.1987.0350101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1987.0350101

Key Words

Navigation