Skip to main content
Log in

X-Ray Powder Diffraction Identification of Illitic Materials

  • Published:
Clays and Clay Minerals

Abstract

The 10-Å clay components of sedimentary rocks (“illites”) are commonly mixtures of 100% nonexpandable illite and an ordered illite/smectite mixed-layer mineral. If the proportion of the illite/ smectite in a mixture is sufficient to produce a measurable reflection between 33–35°2θ (CuKα radiation) that is noncoincident with an illite reflection, the ratio of component layers and type of interstratification for the mixed-layer mineral can be determined. The identification technique developed in this study rests upon the following experimental findings for ordered illite/smectites of diagenetic origin: (1) the thickness of the illite layer in illite/smectites is 9.97 Å; (2) the thickness of smectite-ethylene glycol complex ranges from 16.7 to 16.9 Å; (3) illite/smectites form a continuous sequence of interstratification types—random, random/IS, IS, IS/ISII, ISII—and each type is related to a specific range of expandability.

The new technique broadens the computer simulation method developed by R. C. Reynolds and J. Hower to include those sedimentary materials which are dominated by the presence of discrete illite, are low in illite/smectite, and, as such, have been described previously only by an “illite crystallinity index.”

Резюме

10-Å глинистые компоненты осадочных пород (“иллиты”) обычно являются смесями 100% нерасширяемого иллита и упорядоченного минерала типа смешанно-слойного иллита/смектита (ИС). Отношение составляющих слоев и тип переслаивания для смешанно-слойного минерала могут быть определены, если пропорция иллита/смектита в смеси достаточна, чтобы вызвать измеряемое отра¬жение между 33–35°2θ (излучение СиКα), которое не совпадает с отражением иллита. Техника иден¬тификации, разработанная в этой статье, основывается на последовательных экспериментальных данных для упорядоченных иллитов/смектитов диагенетического происхождения: (1) толщина ил-литового слоя в иллите/смектите равна 9,97 Å; (2) толщина комплекса смектита с этиленовым гликолом изменяется в диапазоне от 16,7 до 16,9 Å; (3) иллиты/смектиты образовывают непрерывный ряд типов прослоев—беспорядочный, беспорядочный/ИС, ИС, ИС/ИСЦ, ИСП-и каждый тип связан со специфическим диапазоном расширяемости.

Эта новая техника расширяет метод компьютерного моделирования, развитый Рейнольдсом и Гоуером и включает такие осадочные материалы, в которых находится отдельный ил лит, которые имеют малые количества иллита/смектита и которые, как таковые, предварительно описывались только при помощи “индекса кристальности иллита.” [Е.G.]

Resümee

Die 10-Å Tonkomponenten von sedimentären Gesteinen (“Illite”) sind gewöhnlich Mischlingen aus 100% nicht expandierbarem Illit und einem regelmäßigen Illit/Smektit-Wechsellagerungsmineral. Wenn das Verhältnis von Illit/Smektit in einer Mischung ausreicht, um einen meßbaren Reflex zwischen 33 und 35°2θ (CuKα-Strahlung) zu erzeugen, der nicht mit einem Illitreflex zusammenfällt, dann kann das Verhältnis der Komponentenschichten und die Art der Wechsellagerung für das Wechsellagerungsmineral bestimmt werden. Die Identifikationstechnik, die in dieser Untersuchung entwickelt wurde, beruht auf den folgenden experimentellen Ergebnissen für geordnete Illit/Smektit-Wechsellagerungen diagenetischen Ursprungs: (1) Die Dicke der Illitlagen in den Illit/Smektit-Wechsellagerungen beträgt 9,97 Å; (2) die Dicke des Smektit-Äthylenglykolkomplexes reicht von 16,7–16,9 Å; (3) Illit-Smektitwechsellagerungen bilden eine kontinuierliche Abfolge von Wechsellagerungstypen—unregelmäßige, unregelmäßige/IS, IS, IS/ISII, ISII—und jeder Typ gehört zu einem bestimmten Bereich von Expandierbarkeit.

Die neue Untersuchungsmethode baut die Computersimulationsmethode aus, die von R. C. Reynolds und J. Hower entwickelt wurde, um solche sedimentären Materialien mit einzuschließen, bei denen diskreter Illit vorherrscht, die wenig Illit/Smektit enthalten, und die, als solche, früher nur durch einen “Illit-Kristallinitätsindex” beschrieben wurden. [U.W.]

Résumé

Les composés argile de 10 Å de roches sédimentaires (“illites”) sont communément des mélanges d’illite 100% non expansible et d’un minéral ordonné à couches mélangées illite/smectite. Si la proportion d’illite/smectite dans un melange est suffisante pour produire une reflection mesurable entre 33-35°2θ (radiation CuKα) qui ne coïncide pas avec une reflection illite, on peut déterminer la proportion de couches du composé et le genre d’interstratification du minéral à couches mélangées. La technique d’identification développée dans cette étude est basée sur les trouvailles expérimentales suivantes pour des illite/ smectites d’origine diagénétique: (1) l’épaisseur de la couche illite dans les illite/smectites est 9,97 Å: (2) l’épaisseur du complexe glycol smectite-éthylène s’étend de 16,7 à 16,9 Å; (3) les illite/smectites forment une séquence continuelle de types d’interstratification—au hasard, au hasard IS, IS, IS/ISII, ISII—et chaque type est apparenté à une étendue spécifique de pouvoir de dilatation.

La nouvelle technique élargit la méthode de simulation à l’ordinateur développée par R. C. Reynolds et J. Hower pour inclure les matériaux sédimentaires qui sont dominées par la présence d’illite discrète, ont un bas contenu en illite/smectite, et, en tant que tels, n’ont jusqu’à présent été décrits que par un “indexe de cristallinité d’illite.” [D.J.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S. W., Brindley, G. W., Kodama, H., and Martin, R. T. (1982) Report of The Clay Minerals Society Nomenclature Committee for 1980–1981. Nomenclature for regular interstratifications: Clays & Clay Minerals 30 76–78.

    Article  Google Scholar 

  • Boles, J. R. and Franks, S. G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation: Sediment. Petrology 49 55–70.

    Google Scholar 

  • Brindley, G. W. and Suzuki, T. (1983) Tarasovite, a mixed-layer illite-smectite which approaches an ordered 3:1 layer ratio: Clay Miner. 18 89–94.

    Article  Google Scholar 

  • Drits, V. A. and Sakharov, B. A. (1976) X-ray Structural Analysis of Mixed-layer Minerals: Acad. Sci. U.S.S.R., 256 pp. (in Russian).

    Google Scholar 

  • Gaudette, H. E., Eades, J. L., and Grim, R. E. (1966) The nature of illite: in Clays and Clay Minerals, Proc. 12th Natl. Conf., Atlanta, Georgia, 1964, W. F. Bradley, ed., Pergamon Press, New York, 33–48.

    Google Scholar 

  • Gallego, J. R. and Perez, L. J. A. (1965) A regular mixed-layer mica-beidellite: Clay Miner. 6 119–122.

    Article  Google Scholar 

  • Grim, R. E., Bray, R. H., and Bradley, W. F. (1937) The mica in argillaceous sediments: Amer. Mineral. 22 813–829.

    Google Scholar 

  • Heller-Kallai, L. and Kaiman, Z. H. (1972) Some naturally occurring illite-smectite interstratifications: Clays & Clay Minerals 20 165–168.

    Article  Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., and Perry, E. A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence: Geol. Soc. Amer. Bull. 87 725–737.

    Article  Google Scholar 

  • Hower, J. and Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite-montmorillonites: Amer. Mineral. 51 825–854.

    Google Scholar 

  • Kakinoki, J. and Komura, Y. (1965) Diffraction by a one-dimensionally disordered crystal: I. The intensity equation: Acta Cryst. 19 137–147.

    Article  Google Scholar 

  • Kisch, H. J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks: in Diagenesis in Sediments and Sedimentary Rocks, G. Larsen and G. V. Chilingar, eds., Elsevier, Amsterdam, 289–493.

    Google Scholar 

  • Kodama, H. (1966) The nature of the component layers of rectorite: Amer. Mineral. 51 1035–1054.

    Google Scholar 

  • Lazarenko, E. K. and Korolev, Yu. M. (1970) Tarasovite, a new dioctahedral ordered interlayered mineral: Zapiski Vses. Obshch. 99 214–224 [Min. Abstr. 22 (1971) Abstr. 71-2339].

    Google Scholar 

  • Nadeau, P. H. and Reynolds, R.C. (1981) Burial and contact metamorphism in the Mancos Shale: Clays & Clay Minerals 29 249–259.

    Article  Google Scholar 

  • Perry, E. A. and Hower, J. (1970) Burial diagenesis of Gulf Coast pelitic sediments: Clays & Clay Minerals 18 165–177.

    Article  Google Scholar 

  • Pevear, D. R., Williams, V. E., and Mustoe, G. E. (1980) Kaolinite, smectite, and K-rectorite in bentonites: relation to coal rank at Tulameen, British Columbia: Clays & Clay Minerals 28 241–254.

    Article  Google Scholar 

  • Reynolds, R. C. (1968) The effect of particle size on apparent lattice spacings: Acta Cryst. A24 319–320.

    Article  Google Scholar 

  • Reynolds, R. C. (1980) Interstratified clay minerals: in Crystal Structures of Clay Minerals and Their X-Ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 249–303.

    Google Scholar 

  • Reynolds, R. C. and Hower, J. (1970) The nature of inter-layering in mixed-layer Ulite-montmorillonites: Clays & Clay Minerals 18 25–36.

    Article  Google Scholar 

  • Schultz, L. G. (1982) Mixed-layer illite/smectite and other minerals in shale, bentonite, and concretions in the Montana Disturbed Belt: Prog. Abst. 19th Annual Meeting, The Clay Minerals Society, Hilo, Hawaii, 1982, p. 82 (abstract).

    Google Scholar 

  • Shimoda, S. (1972) An interstratified mineral of mica and montmorillonite from the mineralized district at Niida near the Shakanai mine, Akita prefecture, Japan: Clay Sci. 4 115–125.

    Google Scholar 

  • Srodon, J. (1979) Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin: in Proc. Int. Clay Conf, Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 251–260.

    Google Scholar 

  • Srodon, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction: Clays & Clay Minerals 28 401–411.

    Article  Google Scholar 

  • Srodon, J. (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite: Clay Miner. 16 297–304.

    Article  Google Scholar 

  • Weaver, C. E. (1960) Possible uses of clay minerals in search for oil: Amer. Assoc. Petrol. Geol. Bull. 44 1505–1518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Śrondoń, J. X-Ray Powder Diffraction Identification of Illitic Materials. Clays Clay Miner. 32, 337–349 (1984). https://doi.org/10.1346/CCMN.1984.0320501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1984.0320501

Key Words

Navigation