Skip to main content
Log in

An Expansible Mineral Having High Rehydration Ability

  • Published:
Clays and Clay Minerals

Abstract

An interstratified mineral (mica-montmorillonite) from a hydrothermally altered andesite in the southern part of Satsuma Peninsula, Japan fully rehydrates after having been heated to 800°C.

Résumé

Un minéral interstratifié (mica-montmorillonite) provenant d’une andésite altérée par voie hydrothermale dans la partie sud de la péninsule de Satsuma, Japon, se réhydrate entièrement après avoir été chauffée à 800°C.

Kurzreferat

Ein Wechsellagerungsmineral (Glimmer-Montmorillonit) aus einem hydrothermal umgewandelten Andesit im südlichen Teil der Satsuma-Halbinsel, Japan, zeigt nach Erhitzung auf 800°C vollständige Rehydratisierung.

Резюме

Минерал с перемежающимся напластованием (слюда-монтмориллонит) от гидротермически измененного андезина из южной части Сатсумского полуострова (Япония) после нагрева до 800°С полностью вновь гидратируется.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Granquist, W. T. and Kennedy, J. V. (1967) Sorption of water at high temperatures on certain clay mineral surfaces. Correlation with lattice fluoride: Clays and Clay Minerals 15, 103–117.

    Article  Google Scholar 

  • Greene-Kelly, R. (1953) Irreversible dehydration in montmorillonite—II: Clay Miner. Bull. 2, 52–56.

    Article  Google Scholar 

  • MacEwan, D. M. C. (1956) Fourier transform methods for studying scattering from lamellar systems—I. A direct method for analysing interstratified minerals: Kolloid Z. 149, 96–108.

    Article  Google Scholar 

  • Scott, A. D., Hunziker, R. R. and Hanway, J. J. (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—I. Preliminary experiments: Soil Sci. Soc. Am. Proc. 24, 191–194.

    Article  Google Scholar 

  • Scott, A. D. and Reed, M. G. (1962a) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—II. Biotite: Soil Sci. Soc. Am. Proc. 26, 41–45.

    Article  Google Scholar 

  • Scott, A. D. and Reed, M. G. (1962b) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron III. Illite: Soil Sci. Soc. Am. Proc. 26, 45–48.

    Article  Google Scholar 

  • Stubican, V. and Roy, R. (1961a) A new approach to assignment of infrared absorption bands in layer structure silicates: Z. Krist. 115, 200–214.

    Article  Google Scholar 

  • Stubican, V. and Roy, R. (1961b) Isomorphous substitution and infrared spectra of the layer lattice silicates: Am. Mineralogist 46, 32–51.

    Google Scholar 

  • Tomita, K. and Dozono, M. (1972) Formation of an interstratified mineral by extraction of potassium from mica with sodium tetraphenylboron: Clays and Clay Minerals 20, 225–231.

    Article  Google Scholar 

  • Tomita, K. and Sudo, T. (1968a) Interstratified structure formed from a pre-heated mica by acid treatments: Nature 217, 1043–1044.

    Article  Google Scholar 

  • Tomita, K. and Sudo, T. (1968b) Conversion of mica into an interstratified mineral: Rept. Faculty of Sci., Kagoshima Univ. (1) 89–119.

    Google Scholar 

  • Tomita, K. and Sudo, T. (1971) Transformation of sericite into an interstratified mineral: Clays and Clay Minerals 19, 263–270.

    Article  Google Scholar 

  • Tomita, K., Yamashita, H. and Oba, N. (1969) An interstratified mineral found in altered andesite: J. Japan. Assoc. Miner. Pet. Econ. Geol. 61, (1) 25–34.

    Article  Google Scholar 

  • Walker, G. F. (1951) Vermiculite and some related mixed-layer minerals: X-ray Identification and Crystal Structures of the Clay Minerals. Chap. VII, pp. 199–223. Mineralogical Society of Great Britain Monograph.

    Google Scholar 

  • White, J. L. (1956) Layer charge and interlamellar lattice silicates: Clays and Clay Minerals 4, 133–146.

    Article  Google Scholar 

  • White, J. L. (1958) Layer charge and interlamellar expansion in a muscovite: Clays and Clay Minerals 5, 289–294.

    Article  Google Scholar 

  • Wright, A. C, Granquist, W. T. and Kennedy, J. V. (1972) Catalysis by layer lattice silicates—I. The structure and thermal modification of a synthetic ammonium dioctahedral clay: J. Catalysis 25, 65–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, K., Dozono, M. An Expansible Mineral Having High Rehydration Ability. Clays Clay Miner. 21, 185–190 (1973). https://doi.org/10.1346/CCMN.1973.0210307

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1973.0210307

Navigation