Skip to main content
Log in

The Oxidation of Octahedral Iron in Biotite

  • Published:
Clays and Clay Minerals

Abstract

Oxidation of octahedral ferrous iron in biotite by saturated bromine water results in a loss of both octahedral and interlayer cations. The hydroxyl adjacent to vacant octahedral cation sites adopt an inclined orientation resulting in a more stable environment for interlayer cations. The only structural change accompanying these processes is a decrease in b-axis dimension which is linearly related to octahedral ferric iron content. These findings are in agreement with observations made on naturally weathered biotites.

Résumé

L’oxydation du fer ferreux octaédrique de la biotite par l’eau de brome saturée entraîne à la fois une perte de cations octaédriques et interfeuillets. L’hydroxyle adjacent au site cationique octaédrique vacant adopte une orientation inclinée entraînant un environnement plus stable pour les cations interfeuillets. Le seul changement de structure qui accompagne ces phénomènes est une diminution du paramètre b qui est relié linéairement à la teneur en fer ferrique octaédrique. Ces observations sont en accord avec celles que l’on peut faire sur les biotites altérées naturellement.

Kurzreferat

Die Oxydation von oktaedrischem Ferro-Eisen in Biotit durch gesättigtes Bromwasser ergibt einen Verlust an oktaedrischen sowie zwischenschichtigen Kationen. Die, freien oktaedrischen Kationenstellen benachbarten, Hydroxyle nehmen eine geneigte Richtung ein wodurch sich eine stabilere Umgebung für Zwischenschichtkationen ergibt. Der einzige, diese Vorgänge begleitende, Gefügewechsel ist eine Abnahme der b-Achsendimension, die in linearer Beziehung zu dem oktaedrischen Ferri-Eisengehalt steht. Diese Befunde stimmen überein mit Beobachtungen, die an natürlich verwitterten Biotiten gemacht wurden.

Резюме

Окисление октаэдрического железистого иона в биотите посредством насыщенной бромом водой, ведет к потере как октаэдрических так и межслоевых катионов. Гидроксил рядом с незаполненными октаэдрическими местонахождениями катионов принимают наклонную ориентацию в результате чего получается более стабильная среда для прослоенных катионов. Единственное структурное изменение сопровождающее эти процессы является уменьшение размера оси-b, линейно связанной с октаэдрическим содержанием железа. Эти данные совпадают с наблюдениями над естественно выветренными биотитами.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, P. W. (1960) Nature and mode of weathering of soil-potassium reserves: J. Sci. Food Agric. 11, 285–292.

    Article  Google Scholar 

  • Barshad, I. (1966) The effect of the variation in precipitation on the nature of clay mineral formation in soils of acid and basic igneous rocks: Proc. Internat. Clay Conf., Jerusalem, Israel.

    Google Scholar 

  • Barshad, I. and Kishk, F. M. (1968) Oxidation of ferrous iron in vermiculite and biotite alters fixation and replaceability of potassium: Science 162, 1401–1402.

    Article  Google Scholar 

  • Brindley, G. W. and MacEwan, D. M. C. (1953) Structural aspects of the mineralogy of clays: Ceramics—A Symposium, pp. 15–59, The British Ceramic Society, Stoke-on-Trent.

    Google Scholar 

  • Brown, G. (1965) Significance of recent structure determinations of layer silicates for clay studies: Clay Miner. 6, 73–83.

    Article  Google Scholar 

  • Denison, I. A.. Fry, W. H. and Gile, P. L. Tech. Bull. U.S. Dep. Agric. (1929) No. 128.

    Google Scholar 

  • Dyakonov, Yu. S. and L’Vova, I. A. (1967) Transformation of trioctahedral micas into vermiculite: Doklady Akad. Nauk. SSSR 175, 432–434.

    Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1964) The i.r. spectra of layer silicates. Spectrochim. Acta 20, 1149–1173.

    Article  Google Scholar 

  • Farmer, V. C., Russell, J. D. and Ahlrichs, J. L. (1968) Spectroscopy of clay minerals: Trans. 9th Int. Congr. Soil Sci. Adelaide, Australia 3, 101–110.

    Google Scholar 

  • Farmer, V. C. and Wilson, M. J. (1970) Experimental Conversion of biotite to hydrobiotite: Nature 226, 841–842.

    Article  Google Scholar 

  • Farmer, V. C., Russell, J. D., McHardy, W. J., Newman, A. C. D., Ahlrichs, J. L. and Rimsaite, J. Y. H. (1971) Evidence for loss of protons and octahedral iron from oxidised biotites and vermiculites: Miner. Mag. 38, 121–137.

    Article  Google Scholar 

  • Foster, M. D. (1960) Interpretation of the composition of trioctahedral micas’. U.S. Geol. Surv. Profess. Paper 354-B.

  • Gastuche, M. C. (1963) Kinetics of acid dissolution of biotite: Proc. Int. Clay Conf. Stockholm 67–83.

    Google Scholar 

  • Gilkes, R. J., Young, R. C. and Quirk, J. P. (1972) Oxidation of ferrous iron in biotite: Nature 236, 89–91.

    Google Scholar 

  • Ismail, F. T. (1969) Role of ferrous iron oxidation in the alteration of biotite: Am. Mineralogist 54, 1460–1466.

    Google Scholar 

  • Jackson, M. L. (1964) Chemical composition of soils: In Chemistry of the Sod (Edited by Bear, F. E.), Reinhold, New York.

    Google Scholar 

  • Juo, A. S. R. and White, J. L. (1969) Orientation of the dipole moments of hydroxyl groups in oxidised and unoxidised biotite: Science 165, 804–805.

    Article  Google Scholar 

  • Radaslovich, E. W. (1962) The cell dimensions and symmetry of layer lattice silicates: Am. Mineralogist 47, 617–636.

    Google Scholar 

  • Raussel-Colom, J. A., Sweatman, T. R., Wells, C. B. and Norrish, K. (1965) In Experimental Pedology (Edited by Hallsworth, E. G. and Crawford, D. V.), Butterworth, London.

  • Rimsaite, J. (1970) Structural formulae of oxidised and hydroxyl-deficient micas and decomposition of the hydroxyl group: Contr. Min. Petrol. 25, 225–240.

    Article  Google Scholar 

  • Robert, M. and Pedro, G. (1969) Etude des relations entre les phenomenes d’oxydation et l’aptitude a 1’ouverture dans les micas trioctaedriques: Proc. Int. Clay Conf. Japan.

    Google Scholar 

  • Rouxhet, P. G. (1970) Hydroxyl stretching bands in micas: a quantitative interpretation: Clay Miner. 8, 375–388.

    Article  Google Scholar 

  • Serratosa, J. M. and Bradley, W. F. (1958) I.R. absorption of OH bonds in micas: Nature 181, 111–112.

    Article  Google Scholar 

  • Vedder, W. (1964) Correlations between i.r. spectrum and chemical composition of mica: Am. Mineralogist 49, 736–768.

    Google Scholar 

  • Walker, G. F. (1949) The decomposition of biotite in the soil: Miner. Mag. 28, 693–703.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilkes, R.J., Young, R.C. & Quirk, J.P. The Oxidation of Octahedral Iron in Biotite. Clays Clay Miner. 20, 303–315 (1972). https://doi.org/10.1346/CCMN.1972.0200507

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1972.0200507

Navigation