Skip to main content
Log in

Inorganic pH Dependent Cation Exchange Charge of Soils

  • General
  • Published:
Clays and Clay Minerals

Abstract

Sodium hydroxide titration curves were determined on H resin treated montmorillonite, untreated acid and neutral soils of different origins and on the same soils with an H resin treatment. The acid montmorillonite titration curve reveals four buffer ranges corresponding to hydronium ions (range I), monomelic trivalent aluminum ions Range II), and two pH dependent charge ranges. Untreated acid soils contained pH dependent buffer zones governed jointly by the organic fraction, the soil pH, the presence of monomeric trivalent aluminum, and the exchange blocking mechanisms of other cations. Following an H resin treatment, soils containing less than 2 per cent of organic matter exhibited a clearly defined third buffer range (Range III) from pH 5.5 to 7.6. The inflection points are masked in the pH dependent buffer range in soils containing more than 2 per cent organic matter. The presence of added aluminum increased the pH dependent charge in an acidified montmorillonite while added ferric iron slightly decreased it. The natural acid weathering processes in soils result in some blocking of pH dependent charge as in Dodge soil of Wisconsin (KCl pH 4.5). When greater acidity develops, a large pH dependent charge results, as in Coolville soil in Ohio (KCl pH 4.0), and the lime requirement of the soil thus increases greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aldrich, D. G., and Buchanan, J. R. (1958) Anomalies in techniques for preparing H-bentonites: Soil Sci. Soc. Amer. Proc., v.22, pp.281–285.

    Article  Google Scholar 

  • Barshad, I. (1960) Significance of the presence of exchangeable magnesium ions in acidified clays: Science, v.131, pp.988–990.

    Article  Google Scholar 

  • Bernstein, F. (1959) Distribution of water and electrolyte between homoionic clays and saturating NaCl solutions: In Clays and Clay Minerals, 8th Conf., Pergamon Press, London, pp.122–149.

    Google Scholar 

  • Bradfield, R. (1927) The saturation capacity of colloidal clay soils: 1st Congr. Intern. Soc. Soil Sci., v.4, pp.858–868.

    Google Scholar 

  • Brown, G. (1953) The dioctahedral analogue of vermiculite: Clay Min. Bull., v.2, pp.64–69.

    Article  Google Scholar 

  • Chernov, V. A. (1959) Genesis of exchangeable aluminum in soils: Sov. Soil Sci., v.10, pp.1150–1156.

    Google Scholar 

  • Dion, H. G. (1944) Iron oxide removal from clays and its influence on base exchange properties and X-ray diffraction patterns of the clays: Soil Sci., v.58, pp.411–424.

    Article  Google Scholar 

  • Dixon, J. B., and Jackson, M. L. (1962) Properties of intergradient chlorite-expansible layer silicates of soils: Soil Sci. Soc. Amer. Proc., v.26, pp.358–362.

    Article  Google Scholar 

  • Fieldes, M., and Schofield, R. K. (1960) Mechanisms of ion adsorption by inorganic soil colloids: New Zealand J. of Sci., v.3, pp.563–579.

    Google Scholar 

  • Garrels, R. M., and Christ, C. L. (1956) Application of cation exchange reactions to the beidellite of the Putnam silt loam soils: Amer. J. Sci., v.254, pp.372–379.

    Article  Google Scholar 

  • Glenn, R. C., Jackson, M. L., Hole, F. D., and Lee, G. B. (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wisconsin: In Clays and Clay Minerals, 8th Conf., Pergamon Press, London, pp.63–83.

    Chapter  Google Scholar 

  • Harward, M. E., and Coleman, N. T. (1954) Some properties of H- and Al-clays and exchange resins: Soil Sci., v.78, pp.181–188.

    Google Scholar 

  • Hissink, D. J. (1924) Base exchange in soils: Trans. Faraday Soc., v.20, pp.551–566.

    Google Scholar 

  • Jackson, M. L. (1958) Soil Chemical Analysis: Prentice-Hall, Englewood Cliffs, N. J., pp.45–46.

    Google Scholar 

  • Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: Trans. Intern. Congr. Soil Sci., 7th Congr., Madison, v.2, pp.445–455.

    Google Scholar 

  • Jackson, M. L. (1963a) Aluminum bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Amer. Proc., v.27, pp.1–10.

    Article  Google Scholar 

  • Jackson, M. L. (1963b) Interlaying of expansible layer silicates in soils by chemical weathering: Clays and Clay Minerals, 11th Conf., Pergamon Press, London, pp.29–46.

    Google Scholar 

  • Jonas, E. C. (1963) Ion exchange at edge and interlayer in montmorillonite differing in size: Science, v.140, pp.75–76.

    Article  Google Scholar 

  • Keeney, D. R., and Corey, R. B. (1963) Factors affecting the lime requirements of Wisconsin soils: Soil Sci. Soc. Amer. Proc., v.27, pp.277–280.

    Article  Google Scholar 

  • Low, P. F. (1955) The role of aluminum in the titration of bentonite: Soil Sci. Soc. Amer. Proc., v.19, pp.135–139.

    Article  Google Scholar 

  • Marshall, C. E., and Bergman, W. E. (1942) The electro-chemical properties of mineral membranes. II. Measurement of potassium-ion activities in colloidal clays: Jour. Phys. Chemistry, v.46, pp.52–61.

    Article  Google Scholar 

  • Page, A. L., and Whittig, L. D. (1961) Iron adsorption by montmorillonite systems: I. Preliminary studies, II. Determination of adsorbed iron: Soil Sci. Soc. Amer. Proc., v.25, pp.278–286.

    Google Scholar 

  • Paver, H., and Marshall, C. E. (1934) The role of aluminum in the reactions of the clays: Jour. Soc. Chem. Ind., v.53, pp.750–760.

    Google Scholar 

  • Pommer, A. M., and Carroll, D. (1960) Interpretation of Potentiometrie titration of H-montmorillonite: Nature, v.185, pp.595–596.

    Article  Google Scholar 

  • Pratt, P. F. (1961) Effects of pH on the cation-exchange capacity of surface soils: Soil Sci. Soc. Amer. Proc., v.25, pp.96–98.

    Article  Google Scholar 

  • Rich, C. I. (1960) Aluminum in interlayers of vermiculite: Soil Sci. Soc. Amer. Proc., v.24, pp.26–32.

    Article  Google Scholar 

  • Rich, C. I., and Obenshain, S. S. (1955) Chemical and clay mineral properties of a red-yellow podzolic soil derived from muscovite schist: Soil Sci. Soc. Amer. Proc., v.19, pp.334–339.

    Article  Google Scholar 

  • Sawhney, B. L., and Jackson, M. L. (1958) Soil montmorillonite formulas: Soil Sci. Soc. Amer. Proc., v.22, pp.115–118.

    Article  Google Scholar 

  • Schofield, R. K. (1939) The electrical charges on clay particles: Soils and Fertilizers, v.2, pp.1–5.

    Google Scholar 

  • Schwertmann, U. (1961) Uber das lösliche und austauschbare aluminium im Boden und seine Wirkung auf die Pflanze: Landw. Forsch., v.14, pp.53–59.

    Google Scholar 

  • Schwertmann, U., and Jackson, M. L. (1963) Hydrogen-aluminum clays: A third buffer range appearing in Potentiometrie titration: Science, v.139, pp.1052–1054.

    Article  Google Scholar 

  • Schwertmann, U., and Jackson, M. L. (1964) Influence of hydroxy aluminum ions on pH titration curves of hydronium-aluminum clays: Soil Sci. Soc. Amer. Proc., v.28. pp. 179–183 (in press).

    Article  Google Scholar 

  • Shen, M. J., and Rich, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Amer. Proc., v.26, pp.33–36.

    Article  Google Scholar 

  • Shoemaker, H. E., McLean, E. O., and Pratt, P. F. (1961) Buffer methods for determining lime requirement of soils with appreciable amounts of extractable aluminum: Soil Sci. Soc. Amer. Proc., v.25, pp.274–277.

    Article  Google Scholar 

  • Slabaugh, W. H. (1952) The heat of neutralization of hydrogen-bentonite: J. Amer. Chem. Soc., v.74, pp.4462–4464.

    Article  Google Scholar 

  • Steyermark, A. (1951) Quantitative Organic Microanalysis: The Blakeston Company, New York, pp.82–121.

    Google Scholar 

  • Truog, E. (1916) A new apparatus for the determination of soil carbonates and new methods for the determination of soil acidity: Jour. Ind. Eng. Chem., v.8, pp.341–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volk, V.V., Jackson, M.L. Inorganic pH Dependent Cation Exchange Charge of Soils. Clays Clay Miner. 12, 281–295 (1963). https://doi.org/10.1346/CCMN.1963.0120130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1963.0120130

Navigation