Skip to main content
Log in

Metal oxyhalide-based heterogeneous catalytic water purification with ultralow H2O2 consumption

  • Article
  • Published:

From Nature Water

View current issue Submit your manuscript

Abstract

In the quest for advanced water treatment via Fenton and Fenton-like reactions, minimizing the hydrogen peroxide (H2O2) usage by improving its activation efficiency is a critical goal. Here we report a metal oxyhalide (MOX)-based Fenton reaction system that differs fundamentally from traditional ones in pollutant removal pathway and mechanism. The MOX/H2O2 system enables efficient coupling and polymerization of organic pollutants via mild surface direct oxidation, bypassing the generation of reactive oxygen species. As a result, pollutants are translocated and removed from water with ultralow H2O2 consumption, avoiding the formation of toxic by-products. It achieves up to 80% pollutant (50% total organic carbon) removal at a H2O2-to-pollutants molar ratio of 2:1, outperforming conventional Fenton systems, which are operated at ratios ranging from 20:1 to 1,000:1. The success of these catalytic systems is attributed to the synergistic actions of O-bridging M and X sites on the catalyst surface, which selectively activate pollutants and H2O2, respectively. The catalyst could be extended to low-cost and environmentally benign MOX materials such as BiOI, FeOCl and VOCl, and be adopted to construct a dynamic membrane filtration catalytic system for high-performance and energy-saving abatement of micropollutants in water, providing a promising water purification paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Fenton (like) configurations and performance of the MOX catalyst.
Fig. 2: Characterizations of the BiOI catalyst and its ultralow H2O2 consumption.
Fig. 3: Pollutant removal behaviour and reaction pathway analyses.
Fig. 4: Mechanism of the BiOI-based heterogeneous Fenton reaction.
Fig. 5: Active facet and reaction sites of BiOI and its reaction thermodynamics.
Fig. 6: Other MOX catalysts and the practical application evaluation.
Fig. 7: DMFCS and micro-pollutant abatement.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data are available in the article and Supplementary Information.

References

  1. Lau, S. S. et al. Toxicological assessment of potable reuse and conventional drinking waters. Nat. Sustain. 6, 39–46 (2022).

    Google Scholar 

  2. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    CAS  Google Scholar 

  3. Miller, C. J., Chang, Y., Wegeberg, C., McKenzie, C. J. & Waite, T. D. Kinetic analysis of H2O2 activation by an iron(III) complex in water reveals a nonhomolytic generation pathway to an iron(IV) oxo complex. ACS Catal. 11, 787–799 (2021).

    CAS  Google Scholar 

  4. Xu, X. et al. Revealing *OOH key intermediates and regulating H2O2 photoactivation by surface relaxation of Fenton-like catalysts. Proc. Natl Acad. Sci. USA 119, e2205562119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Enami, S., Sakamoto, Y. & Colussi, A. J. Fenton chemistry at aqueous interfaces. Proc. Natl Acad. Sci. USA 111, 623–628 (2014).

    CAS  PubMed  Google Scholar 

  6. Glaze, W. H., Kang, J. W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone 9, 335–352 (1987).

    CAS  Google Scholar 

  7. Heycock, C. T. & Mills, W. H. Dr. H. J. H. Fenton, F.R.S. Nature 123, 248–249 (1929).

    Google Scholar 

  8. Technical Specifications of Fenton Oxidation Process for Wastewater Treatment HJ 1095-2020 (Ministry of Ecology and Environment of China, 2020).

  9. Xing, M. Y. et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4, 1359–1372 (2018).

    CAS  Google Scholar 

  10. Lyu, L. & Hu, C. Heterogeneous Fenton catalytic water treatment technology and mechanism. Prog. Chem. 29, 981–999 (2017).

    CAS  Google Scholar 

  11. Zhu, Y. P. et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl. Catal. B 255, 117739 (2019).

    CAS  Google Scholar 

  12. Hou, L. et al. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl. Catal. B 144, 739–749 (2014).

    CAS  Google Scholar 

  13. Vasseghian, Y., Almomani, F., Le, V. T., Moradi, M. & Dragoi, E. N. Decontamination of toxic malathion pesticide in aqueous solutions by Fenton-based processes: degradation pathway, toxicity assessment and health risk assessment. J. Hazard. Mater. 423, 127016 (2022).

    CAS  PubMed  Google Scholar 

  14. Zhu, Z. et al. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: intermediates and pathway. Water Res. 93, 296–305 (2016).

    CAS  PubMed  Google Scholar 

  15. Zhan, S. et al. Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt–zinc oxides. Environ. Sci. Technol. 54, 8333–8343 (2020).

    CAS  PubMed  Google Scholar 

  16. Lyu, L., Yan, D., Yu, G., Cao, W. & Hu, C. Efficient destruction of pollutants in water by a dual-reaction-center Fenton-like process over carbon nitride compounds–complexed Cu(II)–CuAlO2. Environ. Sci. Technol. 52, 4294–4304 (2018).

    CAS  PubMed  Google Scholar 

  17. Xu, J. W. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).

    PubMed  Google Scholar 

  18. Wang, L., Cao, M., Ai, Z. & Zhang, L. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core–shell nanowires by tetrapolyphosphate. Environ. Sci. Technol. 48, 3354–3362 (2014).

    CAS  PubMed  Google Scholar 

  19. Yang, Z. C., Qian, J. S., Yu, A. Q. & Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl Acad. Sci. USA 116, 6659–6664 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, Y. et al. In situ turning defects of exfoliated Ti3C2 mxene into Fenton-like catalytic active sites. Proc. Natl Acad. Sci. USA 120, e2210211120 (2023).

    CAS  PubMed  Google Scholar 

  21. Fu, H. et al. Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B 321, 122012 (2023).

    CAS  Google Scholar 

  22. Wang, L. et al. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process. J. Colloid Interface Sci. 527, 251–259 (2018).

    CAS  PubMed  Google Scholar 

  23. Sen Gupta, S. et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296, 326–328 (2002).

    PubMed  Google Scholar 

  24. Huang, M. et al. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: from fundamental investigation to pilot-scale demonstration. Proc. Natl Acad. Sci. USA 119, e2202682119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, C., Zhang, G., Zhang, W., Gu, Z. & Zhu, G. Specifically adsorbed ferrous ions modulate interfacial affinity for high-rate ammonia electrosynthesis from nitrate in neutral media. Proc. Natl Acad. Sci. USA 120, e2209979120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia, J. et al. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir 27, 1200–1206 (2011).

    CAS  PubMed  Google Scholar 

  27. Cheng, H., Huang, B. & Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6, 2009–2026 (2014).

    CAS  PubMed  Google Scholar 

  28. Ling, C. et al. Atomic-layered Cu5 nanoclusters on FeS2 with dual catalytic sites for efficient and selective H2O2 activation. Angew. Chem. Int. Ed. 61, e202200670 (2022).

    CAS  Google Scholar 

  29. Ren, Y. et al. Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53Cu support: a mechanistic investigation. Environ. Sci. Technol. 54, 5258–5267 (2020).

    CAS  PubMed  Google Scholar 

  30. Zhang, Y.-J. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 13, 3005 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. J. et al. Distinguishing homogeneous advanced oxidation processes in bulk water from heterogeneous surface reactions in organic oxidation. Proc. Natl Acad. Sci. USA 120, e2302407120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hay, A. S. Polymerization by oxidative coupling. 2. Oxidation of 2,6-disubstituted phenols. J. Polym. Sci. 58, 581–591 (1962).

    CAS  Google Scholar 

  33. Maeno, Z., Mitsudome, T., Mizugaki, T., Jitsukawa, K. & Kaneda, K. Selective C–C coupling reaction of dimethylphenol to tetramethyldiphenoquinone using molecular oxygen catalyzed by Cu complexes immobilized in nanospaces of structurally-ordered materials. Molecules 20, 3089–3106 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Maeno, Z. et al. Regioselective oxidative coupling of 2,6-dimethylphenol to tetramethyldipheno-quinone using polyamine dendrimer-encapsulated Cu catalysts. RSC Adv. 3, 9662–9665 (2013).

    CAS  Google Scholar 

  35. Zhao, Y., Wu, L. B., Li, B. G. & Zhu, S. P. The effect of ligand molecular weight on copper salt catalyzed oxidative coupling polymerization of 2,6-dimethylphenol. J. Appl. Polym. Sci. 117, 3473–3481 (2010).

    CAS  Google Scholar 

  36. Gupta, S., van Dijk, J. A. P. P., Gamez, P., Challa, G. & Reedijk, J. Mechanistic studies for the polymerization of 2,6-dimethylphenol to poly(2,6-dimethyl-1,4-phenylene ether): LC-MS analyses showing rearrangement and redistribution products. Appl. Catal. A 319, 163–170 (2007).

    CAS  Google Scholar 

  37. Wang, J. L. et al. Interlayer structure manipulation of iron oxychloride by potassium cation intercalation to steer H2O2 activation pathway. J. Am. Chem. Soc. 144, 4294–4299 (2022).

    CAS  PubMed  Google Scholar 

  38. Yu, J., Taylor, K. E., Zou, H. X., Biswas, N. & Bewtra, J. K. Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environ. Sci. Technol. 28, 2154–2160 (1994).

    CAS  PubMed  Google Scholar 

  39. Yamaguchi, R., Kurosu, S., Suzuki, M. & Kawase, Y. Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem. Eng. J. 334, 1537–1549 (2018).

    CAS  Google Scholar 

  40. Jain, B., Singh, A. K., Kim, H., Lichtfouse, E. & Sharma, V. K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 16, 947–967 (2018).

    CAS  Google Scholar 

  41. Huang, G. X. et al. Ultrasensitive fluorescence detection of peroxymonosulfate based on a sulfate radical-mediated aromatic hydroxylation. Anal. Chem. 90, 14439–14446 (2018).

    CAS  PubMed  Google Scholar 

  42. Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546–1556 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hammes-Schiffer, S. Proton-coupled electron transfer: moving together and charging forward. J. Am. Chem. Soc. 137, 8860–8871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    CAS  PubMed  Google Scholar 

  45. Yang, C. W., Hu, Y., Yuan, L., Zhou, H. Z. & Sheng, G. P. Selectively tracking nanoparticles in aquatic plant using core–shell nanoparticle-enhanced Raman spectroscopy imaging. ACS Nano 15, 19828–19837 (2021).

    CAS  PubMed  Google Scholar 

  46. Liu, T. et al. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat. Commun. 14, 2881 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, N. et al. Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to and mammalian immune system. Environ. Sci. Technol. 47, 6518–6526 (2013).

    CAS  PubMed  Google Scholar 

  48. Ben, W. et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: comparison of wastewater treatment processes. Water Res. 130, 38–46 (2018).

    CAS  PubMed  Google Scholar 

  49. Lotfi, S., Fischer, K., Schulze, A. & Schafer, A. I. Photocatalytic degradation of steroid hormone micropollutants by TiO-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 17, 417–423 (2022).

    CAS  PubMed  Google Scholar 

  50. He, R. et al. Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. Water Res. 243, 120338 (2023).

    CAS  PubMed  Google Scholar 

  51. Zhang, X., Ai, Z. H., Jia, F. L. & Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747–753 (2008).

    CAS  Google Scholar 

  52. Yang, X. J., Xu, X. M., Xu, J. & Han, Y. F. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 135, 16058–16061 (2013).

    CAS  PubMed  Google Scholar 

  53. Gao, P. et al. VOCl as a cathode for rechargeable chloride ion batteries. Angew. Chem. Int. Ed. 55, 4285–4290 (2016).

    CAS  Google Scholar 

  54. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    CAS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51821006, 52192684 and 52027815 to H.-Q.Y.; 51978637 to J.-J.C.; and 52300114 to Y.-J.Z.) and the Instruments Center for Physical Science at the University of Science and Technology of China (USTC). The numerical calculations in this work were conducted on the supercomputing system in the Supercomputing Center of the USTC.

Author information

Authors and Affiliations

Authors

Contributions

Y.-J.Z. came up with the original idea. H.-Q.Y. and J.-J.C. supervised the project. Y.-J.Z., Y.H., W.-W.L., H.-Q.Y. and J.-J.C. designed the experiments. Y.-J.Z., J.-S.T. and Y.H. performed the experiments and the characterizations. G.-X.H. and Y.P. helped with the data interpretations. Y.-J.Z., W.-W.L., J.-J.C. and H.-Q.Y. wrote and revised the paper. All authors commented on the paper.

Corresponding authors

Correspondence to Wen-Wei Li, Jie-Jie Chen or Han-Qing Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Jeonghun Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Figs. 1–39 and Tables 1–8.

Source data

Source Data Figs. 1–7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Tao, JS., Hu, Y. et al. Metal oxyhalide-based heterogeneous catalytic water purification with ultralow H2O2 consumption. Nat Water 2, 770–781 (2024). https://doi.org/10.1038/s44221-024-00281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00281-y

  • Springer Nature Limited

Navigation