Skip to main content

Advertisement

Log in

Development Aspects of Zebrafish Myotendinous Junction: a Model System for Understanding Muscle Basement Membrane Formation and Failure

  • Xenopus and Zebrafish Models for Pathobiology (W Goessling and A Zorn, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

The muscle is separated from tendons by a specialised basement membrane that acts as the structural interface of the myotendinous junction (MTJ). In zebrafish, the larval MTJ forms at the vertical myosepta, which separate the individual myomeres that arise during somitogenesis. In this review, we examine the formation of the vertical myosepta in zebrafish. We then describe insights this gains us in the context of muscle basement membrane failure, the mechanistic basis of the inherited muscle wasting condition muscular dystrophy (MD).

Recent Findings

We examine recent manuscripts that investigate how a well-orchestrated integration of MTJ components is needed during vertical myosepta development. We find the process can be divided into three stereotypical stages of its development based on specific structural properties of the developing basement membrane.

Summary

This review highlights insights that have been gleaned from vertical myosepta formation in zebrafish that maybe of value in developing therapeutic strategies for MD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rumian AP, Wallace AL, Birch HL (2007) Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. Journal of Orthopaedic Research : official publication of the Orthopaedic Research Society 25:458–464

    Article  CAS  Google Scholar 

  2. Scutt N, Rolf CG, Scutt A (2008) Tissue specific characteristics of cells isolated from human and rat tendons and ligaments. J Orthop Surg Res 3:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Staff PH (1982) The effects of physical activity on joints, cartilage, tendons and ligaments. Scand J Soc Med Suppl 29:59–63

    CAS  PubMed  Google Scholar 

  4. Goody MF, Sher RB, Henry CA (2015) Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 401:75–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Woo SL (1982) Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. Biorheology 19:385–396

    CAS  PubMed  Google Scholar 

  6. Woo SL, Gomez MA, Woo YK, Akeson WH (1982) Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19:397–408

    CAS  PubMed  Google Scholar 

  7. Charvet B, Malbouyres M, Pagnon-Minot A, Ruggiero F, Le Guellec D (2011) Development of the zebrafish myoseptum with emphasis on the myotendinous junction. Cell Tissue Res 346:439–449

    Article  CAS  PubMed  Google Scholar 

  8. Charvet B, Ruggiero F, Le Guellec D (2012) The development of the myotendinous junction. A review. MLTJ Muscles, Ligaments and Tendons Journal 2:53–63

    PubMed  Google Scholar 

  9. Sparks SE, Escolar DM (2011) Congenital muscular dystrophies. Handb Clin Neurol 101:47–79

    Article  PubMed  Google Scholar 

  10. Armer HE, Mariggi G, Png KM, Genoud C, Monteith AG, Bushby AJ, Gerhardt H, Collinson LM (2009) Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy. PLoS One 4:e7716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Oorschot V, Sztal TE, Bryson-Richardson RJ, Ramm G (2013) Immuno correlative light and electron microscopy on tokuyasu cryosections. Methods Cell Biol 124:241–258

    Article  Google Scholar 

  12. Koshida S, Kishimoto Y, Ustumi H, Shimizu T, Furutani-Seiki M, Kondoh H, Takada S (2005) Integrinα5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev Cell 8:587–598

    Article  CAS  PubMed  Google Scholar 

  13. Thornhill P, Bassett D, Lochmuller H, Bushby K, Straub V (2008) Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain: a journal of neurology 131:1551–1561

    Article  Google Scholar 

  14. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Developmental Dynamics: an official publication of the American Association of Anatomists 203:253–310

    Article  CAS  Google Scholar 

  15. Berger J, Currie PD (2012) Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis Model Mech 5:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wood AJ, Currie PD (2014) Analysing regenerative potential in zebrafish models of congenital muscular dystrophy. Int J Biochem Cell Biol 56:30–37

    Article  CAS  PubMed  Google Scholar 

  17. Rida PC, Le Minh N, Jiang Y-J (2004) A Notch feeling of somite segmentation and beyond. Dev Biol 265:2–22

    Article  CAS  PubMed  Google Scholar 

  18. Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11:393–404

    Article  CAS  PubMed  Google Scholar 

  19. Holley SA, Geisler R, Nusslein-Volhard C (2000) Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev 14:1678–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozbudak EM, Lewis J (2008) Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 4:e15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gray M, Moens CB, Amacher SL, Eisen JS, Beattie CE (2001) Zebrafish deadly seven functions in neurogenesis. Dev Biol 237:306–323

    Article  CAS  PubMed  Google Scholar 

  22. Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  PubMed  Google Scholar 

  23. Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kubow KE, Vukmirovic R, Zhe L, Klotzsch E, Smith ML, Gourdon D, Luna S, Vogel V (2015) Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun 6

  25. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci 95:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Postel R, Vakeel P, Topczewski J, Knoll R, Bakkers J (2008) Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex. Dev Biol 318:92–101

    Article  CAS  PubMed  Google Scholar 

  27. Hocking DC, Sottile J, Langenbach KJ (2000) Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J Biol Chem 275:10673–10682

    Article  CAS  PubMed  Google Scholar 

  28. Jülich D, Geisler R, Holley S, Consortium TS (2005) Integrina5 and delta/notch signaling have complementary spatiotemporal requirements during zebrafish somitogenesis. Dev Cell 8:575–586

    Article  PubMed  CAS  Google Scholar 

  29. Snow CJ, Peterson MT, Khalil A, Henry CA (2008) Muscle development is disrupted in zebrafish embryos deficient for fibronectin. Developmental Dynamics: an official publication of the American Association of Anatomists 237:2542–2553

    Article  Google Scholar 

  30. Kornblihtt AR, Vibe-Pedersen K, Baralle FE (1983) Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc Natl Acad Sci 80:3218–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microsc Res Tech 51:280–301

    Article  CAS  PubMed  Google Scholar 

  33. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190

    Article  CAS  PubMed  Google Scholar 

  34. Mayer U, Saher G, Fassler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K (1997) Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet 17:318–323

    Article  CAS  PubMed  Google Scholar 

  35. Mayer U (2003) Integrins: redundant or important players in skeletal muscle? J Biol Chem 278:14587–14590

    Article  CAS  PubMed  Google Scholar 

  36. Colognato H, Winkelmann DA, Yurchenco PD (1999) Laminin polymerization induces a receptor–cytoskeleton network. J Cell Biol 145:619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sztal TE, Sonntag C, Hall TE, Currie PD (2012) Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. Hum Mol Genet 21:4718–4731

    Article  CAS  PubMed  Google Scholar 

  38. Parsons MJ, Pollard SM, Saude L, Feldman B, Coutinho P, Hirst EM, Stemple DL (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development 129:3137–3146

    CAS  PubMed  Google Scholar 

  39. Alrowaished, S.S. (2015). Laminin regulates fibronectin levels in the zebrafish myotendinous junction via matrix metalloproteinase-11

  40. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278:28–45

    Article  CAS  PubMed  Google Scholar 

  41. Nishiuchi R, Takagi J, Hayashi M, Ido H, Yagi Y, Sanzen N, Tsuji T, Yamada M, Sekiguchi K (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biology: journal of the International Society for Matrix Biology 25:189–197

    Article  CAS  Google Scholar 

  42. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    Article  CAS  PubMed  Google Scholar 

  43. Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP et al (2004) LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10:696–703

    Article  CAS  PubMed  Google Scholar 

  44. Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore SA, Flanagan JD, Skwarchuk MW, Robbins ME, Mendell JR et al (2002) Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110:639–648

    Article  CAS  PubMed  Google Scholar 

  45. Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP (2013) LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 503:136–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inamori K, Hara Y, Willer T, Anderson ME, Zhu Z, Yoshida-Moriguchi T, Campbell KP (2013) Xylosyl- and glucuronyltransferase functions of LARGE in alpha-dystroglycan modification are conserved in LARGE2. Glycobiology 23:295–302

    Article  CAS  PubMed  Google Scholar 

  47. Kawahara G, Guyon JR, Nakamura Y, Kunkel LM (2010) Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet 19:623–633

    Article  CAS  PubMed  Google Scholar 

  48. Zhefeng Z, Gruszczynska-Biegala J, Zolkiewska A (2005) ADP-ribosylation of integrin α7 modulates the binding of integrin α7β1 to laminin. Biochem J 385:309–317

    Article  CAS  Google Scholar 

  49. Goody MF, Kelly MW, Lessard KN, Khalil A, Henry CA (2010) Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis. Dev Biol 344:809–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bricard Y, Ralliere C, Lebret V, Lefevre F, Rescan PY (2014) Early fish myoseptal cells: insights from the trout and relationships with amniote axial tenocytes. PLoS One 9:e91876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kardon G (1998) Muscle and tendon morphogenesis in the avian hind limb. Development 125:4019–4032

    CAS  PubMed  Google Scholar 

  52. Schnorrer F, Dickson BJ (2004) Muscle building: mechanisms of myotube guidance and attachment site selection. Dev Cell 7:9–20

    Article  CAS  PubMed  Google Scholar 

  53. Yarnitzky T, Min L, Volk T (1997) The Drosophila neuregulin homolog vein mediates inductive interactions between myotubes and their epidermal attachment cells. Genes Dev 11:2691–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Becker S, Pasca G, Strumpf D, Min L, Volk T (1997) Reciprocal signaling between Drosophila epidermal muscle attachment cells and their corresponding muscles. Development 124:2615–2622

    CAS  PubMed  Google Scholar 

  55. Honjo Y, Kniss J, Eisen JS (2008) Neuregulin-mediated ErbB3 signaling is required for formation of zebrafish dorsal root ganglion neurons. Development 135:2615–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Subramanian A, Schilling TF (2014) Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. elife 3:e02372

    Article  PubMed Central  CAS  Google Scholar 

  57. De Luna N, Gallardo E, Sonnet C, Chazaud B, Dominguez-Perles R, Suarez-Calvet X, Gherardi RK, Illa I (2010) Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J Neuropathol Exp Neurol 69:643–653

    Article  CAS  PubMed  Google Scholar 

  58. Crawford BD, Henry CA, Clason TA, Becker AL, Hille MB (2003) Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. Mol Biol Cell 14:3065–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dalcq J, Pasque V, Ghaye A, Larbuisson A, Motte P, Martial JA, Muller M (2012) RUNX3, EGR1 and SOX9B form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS One 7:e50140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. •• Subramanian, A., and Schilling, T.F. (2014). Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. Elife 3. This is a valuable paper in understnding zebrafish myotendinous junction formation and muscular dystrophy.

  61. Chen JW, Galloway JL (2014) The development of zebrafish tendon and ligament progenitors. Development 141:2035–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, Moens CB, Hughes SM (2011) Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Dev Biol 358:102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanjore H, Kalluri R (2006) The role of type IV collagen and basement membranes in cancer progression and metastasis. Am J Pathol 168:715–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li S, Edgar D, Fässler R, Wadsworth W, Yurchenco PD (2003) The role of laminin in embryonic cell polarization and tissue organization. Dev Cell 4:613–624

    Article  CAS  PubMed  Google Scholar 

  65. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  CAS  Google Scholar 

  66. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–1628

    Article  PubMed  CAS  Google Scholar 

  67. Fidler AL, Vanacore RM, Chetyrkin SV, Pedchenko VK, Bhave G, Yin VP, Stothers CL, Rose KL, McDonald WH, Clark TA et al (2014) A unique covalent bond in basement membrane is a primordial innovation for tissue evolution. Proc Natl Acad Sci U S A 111:331–336

    Article  CAS  PubMed  Google Scholar 

  68. Gistelinck C, Gioia R, Gagliardi A, Tonelli F, Marchese L, Bianchi L, Landi C, Bini L, Huysseune A, Witten P (2016) Zebrafish collagen type I: molecular and biochemical characterization of the major structural protein in bone and skin. Scientific Reports 6

  69. Yan YL, Hatta K, Riggleman B, Postlethwait JH (1995) Expression of a type II collagen gene in the zebrafish embryonic axis. Dev Dyn 203:363–376

    Article  CAS  PubMed  Google Scholar 

  70. Li, M., Andersson-Lendahl, M., Sejersen, T., and Arner, A. (2013). Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by ataluren treatment. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology

  71. • Li M, Andersson-Lendahl M, Sejersen T, Arner A (2013) Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle. The Journal of General Physiology 141:335–345 This is an impotant techniques paper that is at the outer limit of recent papers but is still worth noting because of its cutting edge approach

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bushby K, Anderson LV, Pollitt C, Naom I, Muntoni F, Bindoff L (1998) Abnormal merosin in adults. A new form of late onset muscular dystrophy not linked to chromosome 6q2. Brain: a journal of neurology 121(Pt 4):581–588

    Article  Google Scholar 

  73. Bushby KM (1994) The muscular dystrophies. Baillieres Clin Neurol 3:407–430

    CAS  PubMed  Google Scholar 

  74. Geranmayeh F, Clement E, Feng LH, Sewry C, Pagan J, Mein R, Abbs S, Brueton L, Childs AM, Jungbluth H et al (2010) Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscular Disorders : NMD 20:241–250

    Article  PubMed  Google Scholar 

  75. North KN (2011) Clinical approach to the diagnosis of congenital myopathies. Semin Pediatr Neurol 18:216–220

    Article  PubMed  Google Scholar 

  76. Straub V, Rafael JA, Chamberlain JS, Campbell KP (1997) Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 139:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brancaccio A, Schulthess T, Gesemann M, Engel J (1997) The N-terminal region of alpha-dystroglycan is an autonomous globular domain. European journal of biochemistry / FEBS 246:166–172

    Article  CAS  Google Scholar 

  78. Parsons MJ, Campos I, Hirst EM, Stemple DL (2002) Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 129:3505–3512

    CAS  PubMed  Google Scholar 

  79. Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, Sunada Y, Ibraghimov-Beskrovnaya O, Campbell KP (1997) Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum Mol Genet 6:831–841

    CAS  PubMed  Google Scholar 

  80. Serrano, A.L., and Muñoz-Cánoves, P. (2016). Fibrosis development in early-onset muscular dystrophies: mechanisms and translational implications. In Seminars in Cell & Developmental Biology (Elsevier)

  81. Kuno A, Horio Y (2016) SIRT1: a novel target for the treatment of muscular dystrophies. Oxidative Med Cell Longev 2016

  82. Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci U S A 104:7092–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin YY, White RJ, Torelli S, Cirak S, Muntoni F, Stemple DL (2011) Zebrafish fukutin family proteins link the unfolded protein response with dystroglycanopathies. Hum Mol Genet 20:1763–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pollard SM, Parsons MJ, Kamei M, Kettleborough RN, Thomas KA, Pham VN, Bae MK, Scott A, Weinstein BM, Stemple DL (2006) Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol 289:64–76

    Article  CAS  PubMed  Google Scholar 

  85. Siegel AL, Gurevich DB, Currie PD (2013) A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 280:4074–4088

    Article  CAS  PubMed  Google Scholar 

  86. Krauss S, Concordet J-P, Ingham P (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444

    Article  CAS  PubMed  Google Scholar 

  87. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoffman EP, Knudson CM, Campbell KP, Kunkel LM (1987) Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature 330:754–758

    Article  CAS  PubMed  Google Scholar 

  89. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  90. Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott M-O, Fischbeck KH, Kornegay JN, Avery RJ (1988) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334:154–156

    Article  CAS  PubMed  Google Scholar 

  91. Bassett, D.I., and Currie, P.D. (2003). The zebrafish as a model for muscular dystrophy and congenital myopathy. Human molecular genetics 12 Spec No 2, R265-270

  92. Bassett D, Currie PD (2004) Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol 31:537–540

    Article  CAS  PubMed  Google Scholar 

  93. •• Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A, Gomes JP, Marshall JL, Karlsson EK, Verjovski-Almeida S, Lindblad-Toh K (2015) Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 163:1204–1213 This paper highlights zebrafish’s value in assesing novel therapuetic posibilities in muscular dystrophy. It is important because it is a hypothesis-driven test, not a large molecule screen

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. • Servián-Morilla E, Takeuchi H, Lee TV, Clarimon J, Mavillard F, Area-Gómez E, Rivas E, Nieto-González JL, Rivero MC, Cabrera-Serrano M (2016) A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Molecular Medicine 8:1289–1309 Glycosylation is widely studied in the muscular dystrophy field in the context of a-dg; this paper provides fresh insight into other areas where glycosylation maybe important, and we expect more papers showing glycosylation of other important muscle components in the next 5 years

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. • Piccioni, A., Gaetani, E., Palladino, M., Gatto, I., Smith, R., Neri, V., Marcantoni, M., Giarretta, I., Silver, M., and Straino, S. (2014). Sonic hedgehog gene therapy increases the ability of the dystrophic skeletal muscle to regenerate after injury. Gene Therapy 21. This paper shows how a gene involved in the developmental control of muscle can be used to treat muscular dystrophy.

  96. Anderson C, Thorsteinsdóttir S, Borycki A-G (2009) Sonic hedgehog-dependent synthesis of laminin α1 controls basement membrane assembly in the myotome. Development 136:3495–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Horn A, Palumbo K, Cordazzo C, Dees C, Akhmetshina A, Tomcik M, Zerr P, Avouac J, Gusinde J, Zwerina J (2012) Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis & Rheumatism 64:2724–2733

    Article  CAS  Google Scholar 

  98. Goody MF, Kelly MW, Reynolds CJ, Khalil A, Crawford BD, Henry CA (2012) NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 10:e1001409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Ry PM, Minogue P, Hodges BL, Burkin DJ (2014) Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 23:383–396

    Article  CAS  PubMed  Google Scholar 

  100. Wilschut KJ, van Tol HT, Arkesteijn GJ, Haagsman HP, Roelen BA (2011) Alpha 6 integrin is important for myogenic stem cell differentiation. Stem Cell Res 7:112–123

    Article  CAS  PubMed  Google Scholar 

  101. Miyagoe-Suzuki Y, Nakagawa M, Takeda S (2000) Merosin and congenital muscular dystrophy. Microsc Res Tech 48:181–191

    Article  CAS  PubMed  Google Scholar 

  102. Urao N, Mirza RE, Heydemann A, Garcia J, Koh TJ (2016) Thrombospondin-1 levels correlate with macrophage activity and disease progression in dysferlin deficient mice. Neuromuscul Disord 26:240–251

    Article  PubMed  Google Scholar 

  103. Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL et al (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development 136:3367–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moore CJ, Goh HT, Hewitt JE (2008) Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92:159–167

    Article  CAS  PubMed  Google Scholar 

  105. Ryckebüsch L, Hernandez L, Wang C, Phan J, Yelon D (2016) Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Development 143:2965–2972

    Article  PubMed  CAS  Google Scholar 

  106. Rojek JM, Spiropoulou CF, Campbell KP, Kunz S (2007) Old World and clade C New World arenaviruses mimic the molecular mechanism of receptor recognition used by alpha-dystroglycan’s host-derived ligands. J Virol 81:5685–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081

    Article  CAS  PubMed  Google Scholar 

  108. Tayeh A, Tatard C, Kako-Ouraga S, Duplantier J-M, Dobigny G (2010) Rodent host cell/Lassa virus interactions: evolution and expression of α-dystroglycan, LARGE-1 and LARGE-2 genes, with special emphasis on the Mastomys genus. Infect Genet Evol 10:1262–1270

    Article  CAS  PubMed  Google Scholar 

  109. Kawahara G, Kunkel LM (2013) Zebrafish based small molecule screens for novel DMD drugs. Drug discovery today. Technologies 10:e91–e96

    Google Scholar 

  110. Maves L (2014) Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discovery 9:1033–1045

    Article  CAS  Google Scholar 

  111. Straub V, Bertoli M (2016) Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies? Neuromuscul Disord 26:111–125

    Article  PubMed  Google Scholar 

  112. Guiraud S, Chen H, Burns DT, Davies KE (2015) Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 100:1458–1467

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PDC is a Principal NHMRC fellow, director of the Australian Regenerative Medicine Institute at Monash University and Head of EMBL Australia Melbourne Node. This work is supported on a NHMRC grant (APP3151883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Currie.

Ethics declarations

Conflict of Interest

Dr. Currie reports grants from NHMRC aus, during the conduct of the study.

Dr. Wood declares no conflict of interest.

Human and Animal Rights and Informed Consent

Zebrafish used to generate data complied with the Monash University Animal Ethics Committee and National Health and Medical Research Council of Australia code for care and use of animals for scientific purposes.

Additional information

This article is part of the Topical Collection on Xenopus and Zebrafish Models for Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, A.J., Currie, P.D. Development Aspects of Zebrafish Myotendinous Junction: a Model System for Understanding Muscle Basement Membrane Formation and Failure. Curr Pathobiol Rep 5, 197–205 (2017). https://doi.org/10.1007/s40139-017-0140-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0140-z

Keywords

Navigation