Skip to main content

Advertisement

Log in

Discovery, Genomic Analysis, and Functional Role of the Erythrocyte RNAs

  • RNA in Pathobiology (AW Duncan, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Human erythrocytes are responsible for oxygen delivery in the body. Erythrocytes are a product of terminal differentiated erythroid cells that accumulate hemoglobin and exclude nuclei. The long-held conventional wisdom has been that mature erythrocytes lack any genetic materials. Contrary to this view, accumulating evidence from multiple groups indicates that erythrocytes contain abundant and diverse RNA species. These newly discovered genetic materials suddenly open up opportunities to re-examine many diseases affecting erythrocytes.

Recent Findings

The genomic analysis and functional studies of the erythrocyte transcriptome have revealed important insights into various erythrocyte diseases, stored erythrocytes for transfusion, host-pathogens interactions with malaria parasites, and intercellular communications. We reviewed these findings and provide conceptual frameworks for the future works on other potential applications of the erythrocyte transcriptome.

Summary

Collectively, these studies provide a strong case for the translational potential and functional relevance of these erythrocyte transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77(2):171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pauling L, Itano HA et al (1949) Sickle cell anemia a molecular disease. Science 110(2865):543–548

    Article  CAS  PubMed  Google Scholar 

  3. Tanke HJ, Nieuwenhuis IA, Koper GJ et al (1981) Flow cytometry of human reticulocytes based on RNA fluorescence. Cytometry 1(5):313–320

    Article  CAS  PubMed  Google Scholar 

  4. • Azzouzi I, Moest H, Wollscheid B et al (2015) Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells. Exp Hematol 43(5):382–392 This paper describes the integrative erythrocyte microRNAs and associated Ago2-associated proteomics in the erythrocytes. These data indicate many of the erythrocytes microRNAs are associated with Ago2-containing RISC complex.

  5. Chen SY, Wang Y, Telen MJ et al (2008) The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 3(6):e2360

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kannan M, Atreya C (2010) Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion 50(7):1581–1588

    Article  CAS  PubMed  Google Scholar 

  7. Rathjen T, Nicol C, McConkey G et al (2006) Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 580(22):5185–5188

    Article  CAS  PubMed  Google Scholar 

  8. Sarachana T, S Kulkarni, Atreya CD (2015) Evaluation of small noncoding RNAs in ex vivo stored human mature red blood cells: changes in noncoding RNA levels correlate with storage lesion events. Transfusion 55(11):2672-2683

  9. Xue X, Zhang Q, Huang Y et al (2008) No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection. Malar J 7:47

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sangokoya C, LaMonte G, Chi J (2010) Isolation and characterization of microRNAs of human mature erythrocytes. Methods Mol Biol 667:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. •• Mantel PY, Hjelmqvist D, Walch M et al (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun 7:12727 This paper describes the erythrocyte Ago2-microRNAs can regulate target genes of endothelial cells through the secreted microvescicles from malaria-infected erythrocytes.

  12. • Doss J, Corcoran D, Jima D et al (2015) A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics 16(1):952 This paper describes the integrated transcriptome analysis of microRNAs and mRNAs in the mature erythrocytes.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pritchard CC, Kroh E, Wood B et al (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5(3):492–497

    Article  CAS  Google Scholar 

  14. Dore LC, Amigo JD, Dos Santos CO et al (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 105(9):3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu D, dos Santos CO, Zhao G et al (2010) miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev 24(15):1620–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sangokoya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116(20):4338–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu YF, Du TT, Dong M et al (2009) Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood 113(6):1340–1349

    Article  CAS  PubMed  Google Scholar 

  18. Patrick DM, Zhang CC, Tao Y et al (2010) Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev 24(15):1614–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Byon JC, Padilla SM, Papaynnopoulou T (2014) Deletion of Dicer in late erythroid cells results in impaired stress erythropoiesis in mice. Exp Hematol 42(10):852-6e1

  20. Wang LS, Li L, Li L et al MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 125(8):1302–1313

  21. Shaham L, Vendramini E, Ge Y et al (2014) MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood 125(8):1302–1313 125(8):1292-301

  22. Noh SJ, Miller SH, Lee YT et al (2009) Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med 7:98

    Article  PubMed  PubMed Central  Google Scholar 

  23. Teruel-Montoya R, Kong X, Abraham S et al (2014) MicroRNA expression differences in human hematopoietic cell lineages enable regulated transgene expression. PLoS One 9(7):e102259

    Article  PubMed  PubMed Central  Google Scholar 

  24. Walsh M, Lutz RJ, Cotter TG et al (2002) Erythrocyte survival is promoted by plasma and suppressed by a Bak-derived BH3 peptide that interacts with membrane-associated Bcl-X(L). Blood 99(9):3439–3448

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Loyd MR, Randall MS et al (2012) A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy 8(9):1325–1332

    Article  PubMed  PubMed Central  Google Scholar 

  26. Conboy J, Kan YW, Shohet SB et al (1986) Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton. Proc Natl Acad Sci U S A 83(24):9512–9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gill FM, Sleeper LA, Weiner SJ et al (1995) Clinical events in the first decade in a cohort of infants with sickle cell disease. Cooperative Study of Sickle Cell Disease [see comments]. Blood 86(2):776–783

    CAS  PubMed  Google Scholar 

  28. Castro O, Brambilla DJ, Thorington B et al (1994) The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84(2):643–649

    CAS  PubMed  Google Scholar 

  29. Vichinsky EP, Styles LA, Colangelo LH et al (1997) Acute chest syndrome in sickle cell disease: clinical presentation and course. Blood 89(5):1787–1792

    CAS  PubMed  Google Scholar 

  30. Ashley-Koch AE, Elliott L, Kail ME et al (2008) Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease. Blood 111(12):5721–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steinberg MH, Adewoye AH (2006) Modifier genes and sickle cell anemia. Curr Opin Hematol 13(3):131–136

    Article  CAS  PubMed  Google Scholar 

  32. Sankaran VG, Menne TF, Xu J et al (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322(5909):1839–1842

    Article  CAS  PubMed  Google Scholar 

  33. Macari ER, Lowrey CH (2011) Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood 117(22):5987–5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doss JF, Jonassaint JC, Garrett ME et al (2016) Phase 1 study of a sulforaphane-containing broccoli sprout homogenate for sickle cell disease. PLoS One 11(4):e0152895

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deitsch K, Driskill C, Wellems T (2001) Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res 29(3):850–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. LaMonte G, Philip N, Reardon J et al (2012) Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12(2):187–199 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hall N, Karras M, Raine JD et al (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706):82–86

    Article  CAS  PubMed  Google Scholar 

  38. Baum J, Papenfuss AT, Mair GR et al (2009) Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res 37(11):3788–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bahl A, Brunk B, Crabtree J et al (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31(1):212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lacsina JR, LaMonte G, Nicchitta CV et al (2011) Polysome profiling of the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 179(1):42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mantel PY, Hoang AN, Goldowitz I et al (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13(5):521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Regev-Rudzki N, Wilson DW, Carvalho TG et al (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153(5):1120–1133

    Article  CAS  PubMed  Google Scholar 

  43. Nantakomol D, Dondorp AM, Krudsood S et al (2011) Circulating red cell-derived microparticles in human malaria. J Infect Dis 203(5):700–706

    Article  PubMed  PubMed Central  Google Scholar 

  44. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495

    Article  CAS  PubMed  Google Scholar 

  45. Kirschner MB, Kao SC, Edelman JJ et al (2011) Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 6(9):e24145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tonge DP, Gant TW (2016) What is normal? Next generation sequencing-driven analysis of the human circulating miRNAOme. BMC Mol Biol 17:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carson JL, Grossman BJ, Kleinman S et al (2012) Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med 157(1):49–58

    Article  PubMed  Google Scholar 

  48. United States Department of Health and Human Services. The 2011 National Blood Collection and Utilization Survey Report. Washington. 2011 [cited 2014 June 6]; Available from: https://www.hhs.gov/sites/default/files/ash/bloodsafety/2011-nbcus.pdf.

  49. Hess JR (2010) Red cell changes during storage. Transfus Apher Sci 43(1):51–59

    Article  PubMed  Google Scholar 

  50. Doctor A, Spinella P (2012) Effect of processing and storage on red blood cell function in vivo. Semin Perinatol 36(4):248–259

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim-Shapiro DB, Lee J, Gladwin MT (2011) Storage lesion: role of red blood cell breakdown. Transfusion 51(4):844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kor DJ, Van Buskirk CM, Gajic O (2009) Red blood cell storage lesion. Bosn J Basic Med Sci 9(suppl 1):21–27

    PubMed  Google Scholar 

  53. Bennett-Guerrero E, Veldman TH, Doctor A et al (2007) Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci U S A 104(43):17063–17068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beutler E, Meul A, Wood LA (1969) Depletion and regeneration of 2,3-diphosphoglyceric acid in stored red blood cells. Transfusion 9(3):109–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Duke Chancellor’s pilot project fund and the Burroughs Wellcome Fund. P.H.C. was supported by the Hung-Taiwan Duke Fellowship and the graduate program of Molecular Genetics and Microbiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Tsan Chi.

Ethics declarations

Conflict of Interest

Po-Han Chen, Jonathan Hong and Jen-Tsan Chi declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on RNA in Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PH., Hong, J. & Chi, JT. Discovery, Genomic Analysis, and Functional Role of the Erythrocyte RNAs. Curr Pathobiol Rep 5, 43–48 (2017). https://doi.org/10.1007/s40139-017-0124-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0124-z

Keywords

Navigation