Skip to main content

Advertisement

Log in

Urban–rural interface dominates the effects of urbanization on watershed energy and water balances in Southern China

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Quantifying the interactions between land disturbances and energy and water balances, particularly evapotranspiration (ET), is helpful for understanding the land-atmospheric interactions and assessing the effects of urbanization on local climate and hydrological processes at a landscape scale.

Objectives

To investigate the mechanisms of ecohydrological response to urbanization from the perspectives of ET or energy balances in a distributed fashion at the watershed scale. To identify spatial ‘hot spots’, in which ET, and thus watershed hydrology, are most pronounced in response to land use change so that limited watershed landscape management resources can be applied efficiently.

Methods

This process-based research quantified spatial patterns of ET and other energy fluxes in a rapidly urbanizing rice paddy-dominated watershed, Qinhuai River Basin (QRB), using a spatially explicit land surface energy balance model (SEBAL).

Results

The QRB experienced a rapid land use change in urban–rural interface (URI) area, resulting in a significant reduction in actual ET (− 9.4 mm yr−1) but a significant increase in sensible heat (3.71 W m−2 yr−1) and soil heat fluxes (0.85 W m−2 yr−1) during the growing season from 2001 to 2019. The change in energy partitioning at the watershed scale was dominated by URI area identified as the ‘hot spots’ of ecohydrological change within a heterogeneous basin.

Conclusions

Knowledge gained from this study improves parameterizing distributed watershed ecohydrological models (e.g., ET processes) to guide urban planning. Effective watershed landscape management and planning that aims at mitigating the negative impacts of urbanization should focus on URI by preserving vegetation and local wetlands (e.g., rice paddies).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56.

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL). 1 formulation. J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Morenoc JF, Roerink GJ, van der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL). 2 validation. J Hydrol 212–213:213–229

    Article  Google Scholar 

  • Bastiaanssen WGM, Ahmad M, Chemin Y (2002) Satellite surveillance of evaporative depletion across the Indus Basin. Water Resour Res 38:1273

    Article  Google Scholar 

  • Bastiaanssen WGM, Noordman EJM, Pelgrum H, Davids G, Thoreson BP, Allen RG (2005) SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J Irrig Drain Eng 131:85–93

    Article  Google Scholar 

  • Browder JO (2002) The urban-rural interface: urbanization and tropical forest cover change. Urban Ecosyst 6:21–41

    Article  Google Scholar 

  • Chang Y, Ding Y, Zhao Q, Zhang S (2017) Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions: a case study of the upper reach of the Shule River Basin, China. Hydrol Process 31:514–524

    Article  Google Scholar 

  • Chen H, Zhang Y, Yu M, Hua W, Sun S, Li X, Gao C (2015) Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate. Clim Dyn 47:117–136

    Article  CAS  Google Scholar 

  • Crago RD (1996) Conservation and variability of the evaporative fraction during the daytime. J Hydrol 180:173–194

    Article  Google Scholar 

  • DeWalle DR, Swistock BR, Johnson TE, McGuire KJ (2000) Potential effects of climate change and urbanization on mean annual streamflow in the United States. Water Resour Res 36:2655–2664

    Article  Google Scholar 

  • Du J, Song K, Wang Z, Zhang B, Liu D (2013) Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chin Geogra Sci 23:73–91

    Article  Google Scholar 

  • Ebel BA, Mirus BB (2014) Disturbance hydrology: challenges and opportunities. Hydrol Process 28:5140–5148

    Article  Google Scholar 

  • Fang S, Gertner GZ, Sun Z, Anderson AA (2005) The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landsc Urban Plan 73:294–306

    Article  Google Scholar 

  • Fang D, Hao L, Cao Z, Huang X, Qin M, Hu J, Liu Y, Sun G (2020) Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.124869

    Article  Google Scholar 

  • Feng X, Sun G, Fu B, Su C, Liu Y, Lamparski H (2012) Regional effects of vegetation restoration on water yield across the Loess Plateau, China. Hydrol Earth Syst Sci 16:2617–2628

    Article  Google Scholar 

  • Fratini G, Mauder M (2014) Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3. Atmos Meas Tech 7:2273–2281

    Article  Google Scholar 

  • Gao G, Chen D, Xu C, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960–2002. J Geophys Res. https://doi.org/10.1029/2006JD008010

    Article  Google Scholar 

  • Gao G, Xu C, Chen D, Singh VP (2012) Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch Env Res Risk Assess 26:655–669

    Article  Google Scholar 

  • Gao Z, He J, Dong K, Li X (2017) Trends in reference evapotranspiration and their causative factors in the West Liao River basin, China. Agric for Meteorol 232:106–117

    Article  Google Scholar 

  • Gu C, Hu L, Zhang X, Wang X, Guo J (2011) Climate change and urbanization in the Yangtze River Delta. Habitat Int 35:544–552

    Article  Google Scholar 

  • Guan Y, Zheng F, Zhang P, Qin C (2014) Spatial and temporal changes of meteorological disasters in China during 1950–2013. Nat Hazards 75:2607–2623

    Article  Google Scholar 

  • Hao L, Sun G, Liu Y, Wan J, Qin M, Qian H, Liu C, Zheng J, John R, Fan P, Chen J (2015) Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China. Hydrol Earth Syst Sci 19:3319–3331

    Article  Google Scholar 

  • Hao L, Huang X, Qin M, Liu Y, Li W, Sun G (2018) Ecohydrological processes explain Urban Dry Island effects in a Wet Region, Southern China. Water Resour Res 54:6757–6771

    Article  Google Scholar 

  • Hara Y, Takeuchi K, Okubo S (2005) Urbanization linked with past agricultural landuse patterns in the urban fringe of a deltaic Asian mega-city: a case study in Bangkok. Landsc Urban Plan 73:16–28

    Article  Google Scholar 

  • He T, Shao Q (2014) Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 Using MOD16 products. J Geo-Inf Sci. https://doi.org/10.3724/SP.J.1047.2014.00979

    Article  Google Scholar 

  • Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil JH, Osterwalder J, Meier F, Bihlmayer G, Kane CL, Hor YS, Cava RJ, Hasan MZ (2009) Observation of unconventional quantum spin textures in topological insulators. Science 323:919–922

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li Z, Zhang L, Liu Y, Yu H, He Y, Xie Y, Guan X, Ji M, Lin L, Wang S, Yan H, Wang G (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55:719–778

    Article  Google Scholar 

  • Huang X, Hao L, Sun G, Yang Z, Li W, Chen D (2022) Urbanization aggravates effects of global warming on local atmospheric drying. Geophys Res Lett. https://doi.org/10.1029/2021GL095709

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson RB, Jobbágy EG, Nosetto MD (2009) Ecohydrology in a human-dominated landscape. Ecohydrology 2:383–389.

    Article  Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17:1133–1138

    Article  Google Scholar 

  • Jackson RD, Hatfield JL, Reginato RJ, Idso SB, Pinter PJ (1983) Estimation of daily evapotranspiration from one time-of-day measurements. Agric Water Manag 7:351–362.

    Article  Google Scholar 

  • Jiang Y, Wang W, Zhou Z (2017) Evaluation of MODIS MOD16 evaportranspiration product in Chinese River Basins. J Nat Resour 32:517–528.

    Google Scholar 

  • Kiptala JK, Mohamed Y, Mul ML, Van der Zaag P (2013) Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. WATER RESOURCES RESEARCH 49:8495–8510.

    Article  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim S (2016) The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data. Remote Sens. https://doi.org/10.3390/rs8120983

    Article  Google Scholar 

  • Li B, Chen Y, Li W, Cao Z (2011) Remote sensing and the SEBAL model for estimating evapotranspiration in the Tarim River. Acta Geogr Sin 66:1230–1238

    Google Scholar 

  • Li C, Sun G, Caldwell PV, Cohen E, Fang Y, Zhang Y, Oudin L, Sanchez GM, Meentemeyer RK (2020a) Impacts of Urbanization on watershed water balances across the conterminous United States. Water Resour Res 56:1–19.

    Article  Google Scholar 

  • Li C, Sun G, Cohen E, Zhang Y, Xiao J, McNulty SG, Meentemeyer RK (2020b) Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.124581

    Article  Google Scholar 

  • Li G, Zhang F, Jing Y, Liu Y, Sun G (2017) Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci Total Environ 596–597:256–265.

    Article  PubMed  Google Scholar 

  • Li M, Ma Z (2014) Sensible and iatent heat flux variability and response to dry-wet soil moisture zones across China. Boundary-Layer Meteorol 154:157–170.

    Article  Google Scholar 

  • Li S, Zhao W (2010) Satellite-based actual evapotranspiration estimation in the middle reach of the Heihe River Basin using the SEBAL method. Hydrol Process 24:3337–3344.

    Article  Google Scholar 

  • Li Z, Liu X, Ma T, Kejia D, Zhou Q, Yao B, Niu T (2013) Retrieval of the surface evapotranspiration patterns in the alpine grassland-wetland ecosystem applying SEBAL model in the source region of the Yellow River. China Ecol Model 270(64):75

    Google Scholar 

  • Li ZL, Tang R, Wan Z, Bi Y, Zhou C, Tang B, Yan G, Zhang X (2009) A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors (basel) 9:3801–3853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipson M, Grimmond S, Best M, Chow W, Christen A, Chrysoulakis N, Coutts A, Crawford B, Earl S, Evans J, Fortuniak K, Heusinkveld BG, Hong J-W, Hong J, Järvi L, Jo S, Kim Y-H, Kotthaus S, Lee K, Masson V, McFadden JP, Michels O, Pawlak W, Roth M, Sugawara H, Tapper N, Velasco E, Ward HC (2022) Harmonized gap-filled datasets from 20 urban flux tower sites. Earth Syst. Sci. Data 14(11):5157–78

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M, Gong W (2004) A spatial analysis of pan evaporation trends in China, 1955–2000. J Geophys Res. https://doi.org/10.1029/2004JD004511

    Article  Google Scholar 

  • Liu B, Chen X, Zhang L, Liu D (2007) Optimal deployment of water resources for seasonal water shortage area in South China. J Hydraul Eng 38:732–737.

    Google Scholar 

  • Liu X, Yang S, Xu J, Zhang J, Liu J (2017) Effects of soil heat storage and phase shift correction on energy balance closure of paddy fields. Atmósfera 30:39–52.

    Article  CAS  Google Scholar 

  • Long D, Singh VP, Li Z (2011) How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J Geophys Res. https://doi.org/10.1029/2011JD016542

    Article  Google Scholar 

  • Mazrooei A, Reitz M, Wang D, Sankarasubramanian A (2021) Urbanization impacts on evapotranspiration across various spatio-temporal scales. Earth’s Future 9:e2021EF002045.

    Article  Google Scholar 

  • Mkhwanazi M, Chávez J, Andales A, DeJonge K (2015) SEBAL-A: a remote sensing ET algorithm that accounts for advection with limited data. Part II: test for transferability. Remote Sensing 7:15068–15081.

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800.

    Article  Google Scholar 

  • Qin M, Hao L, Sun L, Liu Y, Sun G (2019) Climatic controls on watershed reference evapotranspiration varied during 1961–2012 in Southern China. J Am Water Resour Assoc 55:189–208.

    Article  Google Scholar 

  • Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H, Verdin JP (2013) Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. J Am Water Resour Assoc 49:577–591.

    Article  Google Scholar 

  • Singh RK, Irmak A, Irmak S, Martin DL (2008) Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in South-Central Nebraska. J Irrig Drain Eng 134:273–285.

    Article  Google Scholar 

  • Sun G, Lockaby GB (2012) Water Quantity and Quality at the Urban-Rural Interface. Urban-Rural Interfaces, pp 29–48. https://doi.org/10.2136/2012.urban-rural.c3

  • Sun G, McNulty SG, Lu J, Amatya DM, Liang Y, Kolka RK (2005) Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States. J Hydrol 308:258–268.

    Article  Google Scholar 

  • Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G, Liu C, Lu N, McNulty SG, Miao H, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang Z (2011a) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4:245–255.

    Article  Google Scholar 

  • Sun Z, Wei B, Su W, Shen W, Wang C, You D, Liu Z (2011b) Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math Comput Model 54:1086–1092.

    Article  CAS  Google Scholar 

  • Tang RL et al (2013) Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agri For Meteorol 174:28–42

    Article  Google Scholar 

  • Tse JWP, Yeung PS, Fung JCH, Ren C, Wang R, Wong MMF, Cai M (2018) Investigation of the meteorological effects of urbanization in recent decades: a case study of major cities in Pearl River Delta. Urban Climate 26:174–187.

    Article  Google Scholar 

  • Vejre H, Jensen FS, Thorsen BJ (2010) Demonstrating the importance of intangible ecosystem services from peri-urban landscapes. Ecol Complex 7:338–348.

    Article  Google Scholar 

  • Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RJ (1986) EDDY FLUXES OF CO2 WATER VAPOR, AND SENSIBLE HEAT OVER A DECIDUOUS FOREST. Bound-Layer Meteorol 36:71–91.

    Article  Google Scholar 

  • Vose JM, Sun G, Ford CR, Bredemeier M, Otsuki K, Wei X, Zhang Z, Zhang L (2011) Forest ecohydrological research in the 21st century: what are the critical needs? Ecohydrology 4:146–158.

    Article  Google Scholar 

  • Wang J, Yang S, He T, Lu H (2004) Technological methods of information interpretation and analysis of land use change in urban fringe area—taking Wuxi City as an example. Prog Geogr 23:1–9

    Google Scholar 

  • Wang L, Liu J, Sun G, Wei X, Liu S, Dong Q (2012a) Water, climate, and vegetation: ecohydrology in a changing world. Hydrol Earth Syst Sci 16:4633–4636.

    Article  Google Scholar 

  • Wang X, Zhang C, Wei J (2012b) Application of the SEBAL method in water resources management in the Yellow River Delta of China. Desalin Water Treat 19:212–218.

    Article  Google Scholar 

  • Wang X, Yang M, Wan G (2013) Temporal-Spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizang Plateau during Last 60 years. Plateau Meteorol 32:1557–1567.

    Google Scholar 

  • Wu D, Zhan S, Tu M, Zheng J, Li Y, Guo Y, Peng H (2016) New trends and practical research on the sponge cities with Chinese characteristics. China Soft Sci 1:79–97

    Google Scholar 

  • Wu G, Liu Y, Zhao X, Ye C (2013) Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products. Geogr Res 32:617–627

    Google Scholar 

  • Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol 28:999–1023.

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365.

    Article  Google Scholar 

  • Xiang K, Lia Y, Horton R, Feng H (2020) Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agric Water Manag 232:106043

    Article  Google Scholar 

  • Xu C, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93.

    Article  Google Scholar 

  • Xu L, Shi Z, Wang Y, Zhang S, Chu X, Yu P, Xiong W, Zuo H, Wang Y (2015) Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River Basin, northwest China. Hydrol Process 29:4846–4862.

    Article  Google Scholar 

  • Yan Z, Zhou D (2023) Rural agriculture largely reduces the urban heating effects in China: a tale of the three most developed urban agglomerations. Agric for Meteorol 331:109343

    Article  Google Scholar 

  • Yang J, Mei X, Huo Z, Yan C, Ju H, Zhao F, Liu Q (2015) Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China. J Integr Agric 14:2065–2076.

    Article  Google Scholar 

  • Yang L, Feng Q, Yin Z, Wen X, Si J, Li C, Deo RC (2016) Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrol Process 31:1100–1112.

    Article  Google Scholar 

  • Yang Y, Shang S, Jiang L (2012) Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric for Meteorol 164:112–122.

    Article  Google Scholar 

  • Yang Y, Anderson MC, Gao F, Hain CR, Semmens KA, Kustas WP, Noormets A, Wynne RH, Thomas VA, Sun G (2017) Daily landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrol Earth Syst Sci 21:1017–1037.

    Article  Google Scholar 

  • Yang Y, Anderson M, Gao F, Hain CR, Noormets A, Sun G, Wynne R, Thomas V, Sun L (2020) Investigating impacts of drought and disturbance on evapotranspiration over a forested landscape in North Carolina, USA using high spatiotemporal resolution remotely sensed data. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2018.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan C, Xia J, Li Z, Niu C (2005) Modelling the spatial distribution of actual terrestrial evapotranspiration using a hydrological and meteorological approach. Regional Hydrological Impacts of Climatic Change—Hydroclimatic Variability. IAHS Publication, Wallingford, p 296

    Google Scholar 

  • Zhang J, Zhang Y, Sun G, Song C, Li J, Hao L, Liu N (2022) Climate variability masked greening effects on water yield in the yangtze river basin during 2001–2018. Water Resour Res 58:e2021WR030382.

    Article  Google Scholar 

  • Zhang L, Yao Y, Wang Z, Jia K, Zhang X, Zhang Y, Wang X, Xu J, Chen X (2017b) Satellite-derived spatiotemporal variations in evapotranspiration over Northeast China during 1982–2010. Remote Sens 9:1140.

    Article  Google Scholar 

  • Zhang T, Chen Y (2017a) Analysis of dynamic spatiotemporal changes in actual evapotranspiration and its associated factors in the Pearl River Basin based on MOD16. Water. https://doi.org/10.3390/w9110832

    Article  Google Scholar 

  • Zhang YL, Qin BQ, Chen WM (2004) Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China. Theoret Appl Climatol 78:217–227.

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Y, Sun G, Song C, Dannenberg MP, Li J, Liu N, Zhang K, Zhang Q (2021) Vegetation greening significantly reduced the capacity of water supply to China’s South-North water diversion project. Hydrol Earth Syst Sci 25:5623–5640.

    Article  CAS  Google Scholar 

  • Zheng Q, Hao L, Huang X, Sun L, Sun G (2020) Effects of urbanization on watershed evapotranspiration and its components in Southern China. Water. https://doi.org/10.3390/w12030645

    Article  Google Scholar 

  • Zhou D, Zhao S, Liu S, Zhang L (2014) Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci Total Environ 488–489:136–145.

    Article  PubMed  Google Scholar 

  • Zhou D, Zhao S, Zhang L, Liu S (2016a) Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens Environ 176:272–281.

    Article  Google Scholar 

  • Zhou D, Li D, Sun G, Zhang L, Liu Y, Hao L (2016b) Contrasting effects of urbanization and agriculture on surface temperature in Eastern China. J Geophys Res: Atmos 121:9597–9606.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge China Meteorological Data Service Center (http://data.cma.cn/en) for providing weather observation data, Ministry of Natural Resources of the People’s Republic of China for Chinese map (http://bzdt.ch.mnr.gov.cn/index.html), USGS Earth Explorer site (https://earthexplorer.usgs.gov/) for Landsat imageries and Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/data_access/data_pool) for MODIS product datasets, and USGS FEWS NET SSEBop Actual Evapotranspiration Products (Version 5.0) (https://earlywarning.usgs.gov/fews/product/458).

Funding

LH is funded by the National Natural Science Foundation of China (grants 42061144004, 41977409, and 41877151) and National Key Research and Development Program of China (grant 2019YFC1510202). GS is supported by the Southern Research Station, United States Department of Agriculture Forest Service.

Author information

Authors and Affiliations

Authors

Contributions

GS and LH conceived the ideas, led manuscript conceptualization and designed the methodology. KJ and MQ led data collection, analysis, and interpretation. RT and XH assisted with data collection and created figures. The first draft of the manuscript was written by KJ, MQ and all authors commented on previous versions of the manuscript. All authors gave final approval for publication.

Corresponding author

Correspondence to Lu Hao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 804 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Qin, M., Tang, R. et al. Urban–rural interface dominates the effects of urbanization on watershed energy and water balances in Southern China. Landsc Ecol 38, 3869–3887 (2023). https://doi.org/10.1007/s10980-023-01648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01648-4

Keywords

Navigation