Skip to main content
Log in

Growth and optically active third-order nonlinear optical material: nicotinic acid as optical limiters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An optically good nonlinear organic material, Nicotinic acid, was grown from slow evaporation (solvent) method. The XRD pattern revealed the monoclinic structure which underwent to centrosymmetric space group. The grown crystal functional groups and well-defined optical efficiencies were determined from FT-IR and UV–Visible spectrum. Various optical properties such as reflectance and extinction coefficient are studied and good crystalline feature with low defect is analyzed from the Urbach energy for the grown crystal. The position of energy band is clearly studied, and the emission spectrum is recorded based on the electron excitation from higher to lower energy levels. The calculated solid-state properties support the enhanced NLO nature of the grown material. The strong mechanical stability and moderate threshold value is determined. The evaluated χ(3) from Z-scan studies supports better third-order NLO property when compared with other organic crystals. The OL (optical limiting) behavior shows its limiting threshold to be 3.96 mW/cm2 which substantiates its suitability as optical limiters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

Not applicable.

References

  1. T. Hannah Clara, D. Reuben Jonathan, R. Ragu, M. Nizam Mohideen, J.C. Prasana, Crystal structure, physic-chemical and third order nonlinear traits of the novel(2E)-1-(3,4-dimethoxyphenyl)-3-(4-propoxyphenyl) prop-2-en-1-one (DMPP) chalcone single crystal. J. Solid State Chem. 302, 122382 (2021)

    Article  Google Scholar 

  2. B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, P. Gunter, Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity. J. Mater. Chem. 16, 2839–2842 (2006)

    Article  CAS  Google Scholar 

  3. B. Valarmathi, C. Amirthakumar, S. Sudhakar, G. Vinitha, R. Kumar, R. Mohan, Synthesis, crystal growth, and characterization of Piperazinediium bis (4-aminobenzoate) dehydrate—An efficient third-order nonlinear optical single crystal for optoelectronic application. Chin. J. Phys. 62, 223–239 (2019)

    Article  CAS  Google Scholar 

  4. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, P. Guenter, Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv. Funct. Mater. 17(13), 2018–2023 (2007)

    Article  CAS  Google Scholar 

  5. S.R. Marder, B. Kippelen, A.K.Y. Jen, N. Peyghambarian, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388(6645), 845–851 (1997)

    Article  CAS  Google Scholar 

  6. S. Ravi, R. Sreedharan, K.R. Raghi, T.K. Kumar, K. Naseema, Linear-nonlinear optical and quantum chemical studies on quinolinium 4-aminobenzoate: a third order non-linear optical material for optoelectronic applications. Cryst. Res. Technol. 56(2), 2000076 (2021)

    Article  CAS  Google Scholar 

  7. Henry H. Radamson, Anders Hallén, Ilya Sychugov, Alexander Azarov, Analytical Methods and Instruments for Micro-and Nanomaterials, 2023, https://doi.org/10.1007/978-3-031-26434-4

  8. J.V. Jovita, A. Ramanand, P. Sagayaraj, K. Boopathi, P. Ramasamy, Studies on growth and characterization of 2-amino-5-nitropyridinium trifluoroacetate single crystals. Optik 126(2), 265–269 (2015)

    Article  CAS  Google Scholar 

  9. A. Kutoglu, C. Scheringer, Nicotinic acid C6H5NO2: refinement. Acta Cryst. C 39, 232–234 (1983)

    Article  Google Scholar 

  10. V. Murugesan, M. Saravanabhavan, M. Sekar, Synthesis, characterization and pharmacological investigation of a new charge-transfer complex of 3-aminopyridinum-p-toluenesulfonate. J. Mol. Struct. 1084, 95–102 (2015)

    Article  CAS  Google Scholar 

  11. J. Mohan, ‘Organic spectroscopy principles and applications, 2nd edn. (Narosa Publishers, New Delhi, 2011)

    Google Scholar 

  12. C.R.T. Kumari, M. Nageshwari, R.G. Raman, M.L. Caroline, Crystal growth, spectroscopic, DFT computational and third harmonic generation studies of nicotinic acid. J. Mol. Struct. 1163, 137–146 (2018)

    Article  Google Scholar 

  13. S. Gunasekaran, G. Anand, R. ArunBalaji, J. Dhanalakshmi, S. Kumaresan, Crystal growth and comparison of vibrational and thermal properties of semi-organic nonlinear optical materials, Indian Academy of science. PRAMANA J. Phys. 75, 683–690 (2010)

    Article  CAS  Google Scholar 

  14. J. Tauc, Amorphous and liquid semiconductors, J. Tauc Edition, Plenum, New York (1974)

  15. R.K. Gupta, M. Cavas, F. Yakuphanoglu, Structural and optical properties of nanostructure CdZnO films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95, 107–113 (2012)

    Article  CAS  Google Scholar 

  16. S.M. Azhar, M. Anis, S.S. Hussaini, S. Kalainathan, M.D. Shirsat, G. Rabbani, Doping effect of L-cystine on structural, UV–visible, SHG efficiency, third order nonlinear optical, laser damage threshold and surface properties of cadmium thiourea acetate single crystal. Opt. Laser Technol. 87, 11–16 (2017)

    Article  CAS  Google Scholar 

  17. P.S. Latha Mageshwari, R. Priya, S. Krishnan, V. Joseph, S. Jerome Das, Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: a promising third order NLO material. Opt. Laser Technol. 85, 66–74 (2016)

    Article  Google Scholar 

  18. S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: in thin films. J. Market. Res. 2, 221–227 (2013)

    CAS  Google Scholar 

  19. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  20. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications. Opt. Mater. 79, 152–171 (2018)

    Article  CAS  Google Scholar 

  21. C. Xing, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1–xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31, 2018–2024 (2006)

    Article  CAS  Google Scholar 

  22. M. Askari, N. Soltani, E. Saion, W.M.M. Yunus, H.M. Erfani, M. Dorostkar, Structural and optical properties of PVP-capped nanocrystalline ZnxCd1-xS solid solutions. Superlattices Microstruct. 81, 193–201 (2015)

    Article  CAS  Google Scholar 

  23. G. Herzberg, A. Monfils, The dissociation energies of the H2, HD, and D2 molecules. J. Mol. Spectrosc. 5, 482–498 (1961)

    Article  Google Scholar 

  24. S.L. Castañón-Alonso, O.G. Morales-Saavedra, S. Báez-Pimiento, R. Ortega-Martínez, A. Rodríguez-Rosales, M.E. Hernández-Rojas, Mater. Chem. Phys. 133, 528–540 (2012)

    Article  Google Scholar 

  25. S. Karan, S.P.S. Gupta, Vickers micro hardness studies on solution-grown single crystals of magnesium sulphatehepta-hydrate. Mater. Sci. Eng. 398, 198–203 (2005)

    Article  Google Scholar 

  26. K. Sangwal, A. Kothari, S.K. Arora, Surface diffraction structure determination from combinatorial simultaneous optimization. Surf. Sci. 600, 1475–1486 (2006)

    Article  CAS  Google Scholar 

  27. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62–82 (1953)

    Article  Google Scholar 

  28. N. Vijayan, G. Bhagavannarayana, K.R. Ramesh, R. Gopala Krishnan, K.K. Maurya, P. Ramasamy, A comparative study on solution and Bridgeman grown single crystals of benzimidazole by high resolution x-ray diffractometry, fourier transform infrared, microhardness, laser damage threshold, and second harmonic generation measurement. Cryst. Growth Des. 6, 1542–1546 (2006)

    Article  CAS  Google Scholar 

  29. D.J. Daniel, P. Ramasamy, Studies on semi-organic nonlinear optical single crystal: lithium formate monohydrate. Opt. Mater. 36, 971–976 (2014)

    Article  Google Scholar 

  30. S. Suresh, The growth and the optical, mechanical, dielectric and photoconductivity properties of a new nonlinear optical crystal-L-Phenylalanine-4 nitrophenol NLO single crystal. J. Cryst. Proc. Technol. 3, 87–91 (2013)

    Google Scholar 

  31. S.K. Kurtz, T.T. Perry, A powder technique for the evolution of nonlinear optical materials. J. Appl. Phys. 39, 3798–3812 (1968)

    Article  CAS  Google Scholar 

  32. B. Deepa, P. Philominathan, Investigation on the optical, mechanical and magnetic properties of organic NLO single crystal: Pyridine 3-Carboxylic acid. Optik 127, 8698–8705 (2016)

    Article  CAS  Google Scholar 

  33. C.R.T. Kumari, S. Sudha, G. Vinitha, M. Nageshwari, M.L. Caroline, G. Mathubala, A. Manikandan, Synthesis and characterization analysis of unique organic crystal—Urea Glutaric acid, an optimistic candidate for optical device applications. Physica B 577, 411804 (2020)

    Article  Google Scholar 

  34. T. Thilak, M. Basheer Ahamed, G. Vinitha, Third order nonlinear optical properties of potassium dichromate single crystals by Z-scan technique. Optik 124, 4716–4720 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has not been funded by any individuals or any organizations.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: M. Nageshwari, C. Rathika Thaya Kumari, and T. Kamaraj. Acquisition of data: V. Chithambaram, A. Dinesh, M. Lydia Caroline, and Manikandan Ayyar. Analysis and interpretation of data: M. Nageshwari, C. Rathika Thaya Kumari, and T. Kamaraj. Drafting of manuscript: M. Nageshwari, C. Rathika Thaya Kumari, and M. Lydia Caroline. Critical revision: Manikandan Ayyar, Y. Slimani, M.A. Almessiere, and A. Baykal.

Corresponding authors

Correspondence to M. Lydia Caroline or Manikandan Ayyar.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nageshwari, M., Kumari, C.R.T., Kamaraj, T. et al. Growth and optically active third-order nonlinear optical material: nicotinic acid as optical limiters. J Mater Sci: Mater Electron 35, 1754 (2024). https://doi.org/10.1007/s10854-024-13525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13525-0

Navigation