Skip to main content
Log in

Magnetotransport and acoustic effects in variable valence element-substituted manganese selenides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The magnetic, transport and acoustic properties of materials TmXMn1−XSe (0.025 ≤ X ≤ 0.2) have been studied in magnetic fields of up to 12 kOe at temperatures of 80‒600 K. The magnetic phase transition temperatures (TN) and change in the sign of resistance at DC current in vicinity of the TN were established. The temperature and concentration ranges corresponding to the maximum magnetoresistance (− 50% for X = 0.025) and magnetoimpedance (12% for X = 0.2) have been determined. The mechanism of relaxation has been established from the impedance spectrum and the activation energy change upon temperature and concentration has been found. The difference between the dc and ac magnetoresistances has been disclosed. The concentration range with hole and electron type carriers is determined. The mobility anomalies in the vicinity of the valence transition have been established. It is shown that the current and electrical resistance in the TmXMn1−XSe compound can be manipulated by ultrasound and a magnetic field. A qualitative difference between the interaction of current and ultrasound in the magnetically ordered and paramagnetic regions is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The data will be made available upon a reasonable request via email.

References

  1. J. Yin, C. Wu, L. Li, J. Yu, H. Sun, B. Shen, B.A. Frandsen, D.X. Yao, M. Wang, Phys. Rev. (2020). https://doi.org/10.1103/PhysRevMaterials.4.013405

    Article  Google Scholar 

  2. O.B. Tsiok, L.G. Khvostantsev, V.V. Brazkin, J. Exp. Theor. Phys. (2015). https://doi.org/10.1134/S1063776115050222

    Article  Google Scholar 

  3. A.V. Golubkov, E.V. Goncharova, V.P. Juse, G.M. Loginov, V.M. Sergeeva, I.A. Smirnov. Physical properties of chalcogenides of rare earth elements, (Nauka, Leningrad, 1973 [in Russia]), p. 304

  4. A. Selestina, V. Vijay, N. Karunagaran, M. Navaneeyhan, J. Alloys Comp. (2024). https://doi.org/10.1016/j.jallcom.2023.172840

    Article  Google Scholar 

  5. S. Zulkifal, S. Siddique, Z. Wang, X. Zhang, X. Huang, Q. Xia, Q. Zhang, S. Li, P. Wang, Di. Li, P. Ying, Yongsheng, G. Tang, Small J. (2024). https://doi.org/10.1002/smll.202310123

    Article  Google Scholar 

  6. S. Chen, Y. Zhong, J. Cai, Z. Zhang, F. Gao, S. Huo, Wu. Jiehua, C. Cui, X. Tan, G. Liu, D. Fang, J. Jiang, Mater. Today Phys. (2024). https://doi.org/10.1016/j.mtphys.2024.101393

    Article  Google Scholar 

  7. S.S. Aplesnin, A.M. Kharkov, O.B. Romanova, M.N. Sitnikov, E.V. Eremin, M.V. Gorev, K.I. Yanushkevich, V.V. Sokolov, AYu. Pichugin, JMMM (2014). https://doi.org/10.1016/j.jmmm.2013.09.061

    Article  Google Scholar 

  8. S. Aplesnin, M. Sitnikov, O. Romanova, A. Kharkov, O. Begisheva, F. Zelenov, Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-02432-0

    Article  Google Scholar 

  9. S.S. Aplesnin, M.N. Sitnikov, A.M. Kharkov, A.N. Masyugin, V.V. Kretinin, O.B. Fisenko, M.V. Gorev, Phys. St. Sol. (b) (2019). https://doi.org/10.1002/pssb.201900043

    Article  Google Scholar 

  10. O.B. Romanova, S.S. Aplesnin, M.N. Sitnikov, L.V. Udod, A.V. Shabanov, K.I. Yanushkevich, A.I. Galyas, A.M. Zhivulko, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.06.244

    Article  Google Scholar 

  11. S.J. Youn, B.I. Min, A.J. Freeman, Phys. Stat. Sol. (b) (2004). https://doi.org/10.1002/pssb.200304538

    Article  Google Scholar 

  12. S.S. Aplesnin, L.I. Ryabinkina, O.B. Romanova, D.A. Balaev, O.F. Demidenko, K.I. Yanushkevich, N.S. Miroshnichenko, Phys. Sol. St. (2007). https://doi.org/10.1134/S106378340711011X

    Article  Google Scholar 

  13. D.L. Decker, R.L. Wild, Phys. Rev. B 4, 3425 (1971). https://doi.org/10.1103/PhysRevB.4.3425

    Article  Google Scholar 

  14. J.B.C. Efrem D’Sa, P.A. Bhobe, K.R. Priolkar, A. Das, P.S.R. Krishna, P.R. Sarode, R.B. Prabhu, J. Phys. (2004). https://doi.org/10.1007/BF02704977

    Article  Google Scholar 

  15. E.D. Jones, Phys. Rev. (1966). https://doi.org/10.1103/PhysRev.151.315

    Article  Google Scholar 

  16. H. van der Heide, J.P. Sanchez, C.F. van Bruggen, JMMM (1980). https://doi.org/10.1016/0304-8853(80)90232-2

    Article  Google Scholar 

  17. K.E. Ingle, J.B.C. Efrem D’Sa, A. Das, K.R. Priolkar, JMMM (2013). https://doi.org/10.48550/arXiv.1410.6562

    Article  Google Scholar 

  18. S.M. Shapiro, H.B. Moller, J.D. Axe, R.J. Birgeneau, E. Bucher, J. Appl. Phys. (1978). https://doi.org/10.1063/1.324753

    Article  Google Scholar 

  19. H.R. Ott, B. Batlogg, E. Kaldis, P. Wachter, J. Appl. Phys. (1978). https://doi.org/10.1063/1.324757

    Article  Google Scholar 

  20. K. Andres, W.M. Waish Jr., S. Darack, L.W. Rupp Jr., L.D. Longinotti, Sol. St. Comm. (1978). https://doi.org/10.1016/0038-1098(78)90185-0

    Article  Google Scholar 

  21. P. Haen, F. Lapierre, J.M. Mignot, R. Tournier, JMMM (1980). https://doi.org/10.1016/0304-8853(80)90855-0

    Article  Google Scholar 

  22. N.N. Stepanov, V.V. Shchnnikov, N.V. Morozova, I.V. Korobeinikov, A.V. Golubkov, V.V. Kaminskii, Phys. Sol. St. (2014). https://doi.org/10.1134/S1063783414090261

    Article  Google Scholar 

  23. M. Ribault, J. Flouquet, P. Haen, F. Lapierre, J.M. Mignot, F. Holtzberg, Phys. Rew. Lett. (1980). https://doi.org/10.1103/PhysRevLett.45.1295

    Article  Google Scholar 

  24. D.I. Khomskii, SPU (1979). https://doi.org/10.1070/PU1979v022n11ABEH005645

    Article  Google Scholar 

  25. S. Lebègue, G. Santi, A. Svane, O. Bengone, M.I. Katsnelson, A.I. Lichtenstein, O. Eriksson, Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.72.245102

    Article  Google Scholar 

  26. H.J.F. Jansen, A.J. Freeman, R. Monnier, JMMM (1985). https://doi.org/10.1016/0304-8853(85)90464-0

    Article  Google Scholar 

  27. K. Mitchell, J.A. Ibers, Chem. Rev. 102, 1929 (2002). https://doi.org/10.1021/cr010319h

    Article  CAS  PubMed  Google Scholar 

  28. C. Celania, A.-V. Mudring, J. Solid State Chem. (2019). https://doi.org/10.1016/j.jssc.2019.03.009

    Article  Google Scholar 

  29. Z. Zhang, H. Zhao, C. Zhang, F. Luo, Du. Yaping, InfoMat (2020). https://doi.org/10.1002/inf2.12083

    Article  Google Scholar 

  30. G.K. Ahwalia, Aplications of chalcogenides S, Se and Te (Springer, Cham, 2017), p.461

    Book  Google Scholar 

  31. Hu. Jifan, H. Qin, Bo. Li, Y. Wang, Y. Zhang, JMMM (2011). https://doi.org/10.1016/j.jmmm.2010.12.046

    Article  Google Scholar 

  32. Z. Wei, X. Yang, L. Lv, M. Zhang, Y. Zhang, J. Mod. Transp. (2014). https://doi.org/10.1007/s40534-014-0048-9

    Article  Google Scholar 

  33. A. Rebello, R. Mahendiran, Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3293292

    Article  Google Scholar 

  34. M. Streibl, A. Wixforth, J.P. Kotthaus, A.O. Govorov, C. Kadow, A.C. Gossard, Appl. Phys. Lett. (1999). https://doi.org/10.1063/1.125562

    Article  Google Scholar 

  35. M.J. Hoskins, H. Morkoҫ, B.J. Hunsinger, Appl. Phys. Lett. (1982). https://doi.org/10.1063/1.93526

    Article  Google Scholar 

Download references

Acknowledgements

The morphology of the polycrystalline TmXMn1-XSe (0.025 ≤ X ≤ 0.2) samples was examined using equipment’s (SEM) the Krasnoyarsk Regional Center of Research equipment of Federal Research Center «Krasnoyarsk Science Center SB RAS». The authors would like to express their deepest gratitude to the researcher A.I. Galyas and leading researcher K.I. Yanushkevich from Scientific-Practical Materials Research Center NAS, Minsk for the synthesis and magnetic research of samples TmXMn1-XSe.

Funding

This work was within the state assignment of Kirensky Institute of Physics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by O.B. Romanova, S.S. Aplesnin, M.N. Sitnikov, L.V. Udod and A.M. Zhivulko. The first draft of the manuscript was written by O.B. Romanova and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to O. B. Romanova.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, O.B., Aplesnin, S.S., Sitnikov, M.N. et al. Magnetotransport and acoustic effects in variable valence element-substituted manganese selenides. J Mater Sci: Mater Electron 35, 1751 (2024). https://doi.org/10.1007/s10854-024-13521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13521-4

Navigation