Skip to main content
Log in

Microwave-assisted rapid synthesis of GO/SnTe nanocomposite for electrochemical quantification of caffeine and pharmaceutical formulations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this investigation, a rapid microwave-assisted method was employed for the first time to synthesize the GO/SnTe nanocomposite. This approach lowers the energy barrier and accelerates the reaction, significantly impacting the shape and activity of the GO/SnTe nanocomposite. Tin telluride is a desirable electroactive component because of its low bandgap and high theoretical capacity. Additionally, the high surface area and defective structure of GO promote enhanced current flow across the electrode. The integration of these two materials generates a synergistic effect, enhancing electrocatalytic activity for the efficient oxidation of caffeine. Furthermore, the fabricated GO/SnTe-GC electrode outperformed reported electrodes for caffeine oxidation, exhibiting a broad linear range of 4.1–255 µM and a detection limit of 1.56 μM. On the other hand, the findings from real sample analysis and anti-interference studies indicate that this innovative material holds promise for developing novel electrochemical sensors. Particularly, graphene oxide modified with tin chalcogenides act as a real-time sensor with specific applications to real samples such as human milk and drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Not applicable.

References

  1. Y. Zhang, S. Chen, X. Sun, H. Jing, X. Zhou, Electrochemical biosensors for the non-invasive diagnosis of breast cancer. Electrochim. Acta 468, 143190 (2023)

    Article  CAS  Google Scholar 

  2. M. Motaghedifard, M. Behpour, S.M. Ghoreishi, Self-assembling monolayer of Schiff’s base formed between o-methoxyphenyl methyl ketone and 2-aminothiophenol at the surface of gold electrode for electrochemical impedimetric sensing of uranyl cations. Sens. Actuators B Chem. 203, 802–811 (2014)

    Article  CAS  Google Scholar 

  3. J.-M. Zen, A. Senthil Kumar, D.-M. Tsai, Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15, 1073–1087 (2003)

    Article  CAS  Google Scholar 

  4. Y. Gao, Y. Guo, P. He, Z. Liu, Y. Chen, Enhanced sensitivity and selectivity of an electrochemical sensor for real-time propofol monitoring in anesthesia. Alex. Eng. J. 87, 47–55 (2024)

    Article  Google Scholar 

  5. H.C. Ananda Murthy, K. Gebremedhn Kelele, C.R. Ravikumar, H.P. Nagaswarupa, A. Tadesse, T. Desalegn, Graphene-supported nanomaterials as electrochemical sensors: a mini review. Results Chem. 3, 100131 (2021)

    Article  CAS  Google Scholar 

  6. U. Pengsomjit, F. Alabdo, C. Karuwan, C. Kraiya, W. Alahmad, S.A. Ozkan, Innovative graphene-based nanocomposites for improvement of electrochemical sensors: synthesis, characterization, and applications. Crit. Rev. Anal. Chem. (2024). https://doi.org/10.1080/10408347.2024.2343854

    Article  PubMed  Google Scholar 

  7. A.K. Potbhare, S.K.T. Aziz, M.M. Ayyub, A. Kahate, R. Madankar, S. Wankar, A. Dutta, A. Abdala, S.H. Mohmood, R. Adhikari, R.G. Chaudhary, Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. Nanoscale Adv. 6, 2539–2568 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Maduraiveeran, Enzyme-free electrochemical sensor platforms based on transition metal nanostructures for clinical diagnostics. Anal. Methods 15, 6620–6630 (2023)

    Article  CAS  PubMed  Google Scholar 

  9. I.A. Mahdy, E.A. Mahmoud, M.A. Mahdy, Tin telluride quantum dot thin films: size dependent structural, optical and electrical properties. Mater. Sci. Semicond. Process. 121, 105398 (2021)

    Article  CAS  Google Scholar 

  10. I. Amorim, L. Liu, Transition metal tellurides as emerging catalysts for electrochemical water splitting. Curr. Opin. Electrochem. 34, 101031 (2022)

    Article  CAS  Google Scholar 

  11. A. Banik, K. Biswas, Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1−xSex system. J. Mater. Chem. A Mater. Energy Sustain. 2, 9620–9625 (2014)

    Article  CAS  Google Scholar 

  12. G. Tan, F. Shi, S. Hao, H. Chi, T.P. Bailey, L.-D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507–11516 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. A.E. Abdelrahman, W.M.M. Yunus, A.K. Arof, Optical properties of tin sulphide (SnS) thin film estimated from transmission spectra. J. Non Cryst. Solids 358, 1447–1451 (2012)

    Article  CAS  Google Scholar 

  14. S. Das, D. Pandey, J. Thomas, T. Roy, 2D materials: the role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 31, 1970006 (2019)

    Article  Google Scholar 

  15. S.M. Ali, H. Kassim, M.S. Amer, Nanoarchitectonics of tin telluride: a novel pseudocapacitive material for energy storage application. Mater. Chem. Phys. 301, 127698 (2023)

    Article  CAS  Google Scholar 

  16. Q. Yao, Y. Zhu, L. Chen, Z. Sun, X. Chen, Microwave-assisted synthesis and characterization of Bi2Te3 nanosheets and nanotubes. J. Alloys Compd. 481, 91–95 (2009)

    Article  CAS  Google Scholar 

  17. B.-Z. Tian, J. Chen, X.-P. Jiang, J. Tang, D.-L. Zhou, Q. Sun, L. Yang, Z.-G. Chen, Enhanced thermoelectric performance of SnTe-based materials via interface engineering. ACS Appl. Mater. Interfaces 13, 50057–50064 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. R. Harpeness, A. Gedanken, Microwave-assisted synthesis of nanosized Bi2Se3. New J. Chem. 27, 1191–1193 (2003)

    Article  CAS  Google Scholar 

  19. T. Lv, L. Pan, X. Liu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO–reduced graphene oxide–carbon nanotube composites synthesized via microwave-assisted reaction. Catal. Sci. Technol. 2, 2297 (2012)

    Article  CAS  Google Scholar 

  20. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509, 10086–10091 (2011)

    Article  CAS  Google Scholar 

  21. A. Kumar, Y. Kuang, Z. Liang, X. Sun, Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater. Today Nano 11, 100076 (2020)

    Article  Google Scholar 

  22. Microwave assisted synthesis, a green chemistry approach Int. Res J Pharm. App Sci 3, 278–285 (2013)

    Google Scholar 

  23. N. Kaur, M. Singh, A. Moumen, G. Duina, E. Comini, 1D titanium dioxide: achievements in chemical sensing. Materials (Basel) 13, 2974 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. B. Nan, X. Song, C. Chang, K. Xiao, Y. Zhang, L. Yang, S. Horta, J. Li, K.H. Lim, M. Ibáñez, A. Cabot, Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Appl. Mater. Interfaces 15, 23380–23389 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. Alizadeh, M.R. Ganjali, M. Zare, P. Norouzi, Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim. Acta 55, 1568–1574 (2010)

    Article  CAS  Google Scholar 

  26. R.J. Maughan, J. Griffin, Caffeine ingestion and fluid balance: a review. J. Hum. Nutr. Diet. 16, 411–420 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. M. Nakajima, T. Yokoi, M. Mizutani, S. Shin, F.F. Kadlubar, T. Kamataki, Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol. Biomarkers Prev. 3, 413–421 (1994)

    CAS  PubMed  Google Scholar 

  28. J.E. James, Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom. Med. 66, 63–71 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. V. Fernández-Dueñas, S. Sánchez, E. Planas, R. Poveda, Adjuvant effect of caffeine on acetylsalicylic acid anti-nociception: prostaglandin E2 synthesis determination in carrageenan-induced peripheral inflammation in rat. Eur. J. Pain 12, 157–163 (2008)

    Article  PubMed  Google Scholar 

  30. A. Nehlig, J.L. Daval, G. Debry, Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 17, 139–170 (1992)

    Article  CAS  PubMed  Google Scholar 

  31. N.A. Aschemacher, S.A. Gegenschatz, C.M. Teglia, Á.S. Siano, F.A. Gutierrez, H.C. Goicoechea, Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(l-proline) decorated carbon nanotubes in biological and food samples. Talanta 267, 125246 (2024)

    Article  CAS  PubMed  Google Scholar 

  32. J.L. Temple, C. Bernard, S.E. Lipshultz, J.D. Czachor, J.A. Westphal, M.A. Mestre, The safety of ingested caffeine: a comprehensive review. Front. Psychiatry 8, 80 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  33. M. Eagambaram, K. Kumar, Design of an efficient tin selenide-based ternary nanocomposite electrode for simultaneous determination of paracetamol, tryptophan, and caffeine. ACS Omega 7, 35486–35495 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Sugai, K. Murase, S. Katayama, S. Takaoka, S. Nishi, H. Kawamura, Carrier density dependence of soft TO-phonon in SnTe by Raman scattering. Solid State Commun. 24, 407–409 (1977)

    Article  CAS  Google Scholar 

  35. L.J. Brillson, E. Burstein, L. Muldawer, Raman observation of the ferroelectric phase transition in SnTe. Phys. Rev. 9, 1547–1551 (1974)

    Article  CAS  Google Scholar 

  36. S. Khosravi Ghandomani, B. Khoshnevisan, R. Yousefi, The capability of SnTe QDs as QDSCs working in the visible–NIR region and the effects of Eu-doping on improvement of solar cell parameters. J. Mater. Sci.: Mater. Electron. 29, 18989–18996 (2018)

    CAS  Google Scholar 

  37. M. Tanhaei, A.R. Mahjoub, V. Safarifard, Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework. Inorg. Chem. Commun. 102, 185–191 (2019)

    Article  CAS  Google Scholar 

  38. Q. Jiang, R. Chen, H. Chen, J. Jiang, X. Yang, Y. Ju, R. Ji, Y. Zhang, Improved performance in dye-sensitized solar cells via controlling crystalline structure of nickel selenide. J. Mater. Sci. 53, 7672–7682 (2018)

    Article  CAS  Google Scholar 

  39. M. Yang, W. Zhang, D. Su, J. Wen, L. Liu, X. Wang, Flexible SnTe/carbon nanofiber membrane as a free-standing anode for high-performance lithium-ion and sodium-ion batteries. J. Colloid Interface Sci. 605, 231–240 (2022)

    Article  CAS  PubMed  Google Scholar 

  40. X. Zheng, Z. Tian, R. Bouchal, M. Antonietti, N. López-Salas, M. Odziomek, Tin (II) chloride salt melts as non-innocent solvents for the synthesis of low-temperature nanoporous oxo-carbons for nitrate electrochemical hydrogenation. Adv. Mater. 36, e2311575 (2023)

    Article  PubMed  Google Scholar 

  41. A.J. Bard, L.R. Faulker, Electrochemical methods: fundamentals and applications (John Wiley & Sons, New York, 2001)

    Google Scholar 

  42. M.K.S. Monteiro, D.R. Da Silva, M.A. Quiroz, V.J.P. Vilar, C.A. Martínez-Huitle, E.V. Dos Santos, Applicability of cork as novel modifiers to develop electrochemical sensor for caffeine determination. Materials (Basel) 14, 37 (2020)

    Article  PubMed  Google Scholar 

  43. E. Murugan, K. Kumar, Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal. Chem. 91, 5667–5676 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.M. gratefully acknowledge the Center for Computational Modelling, Chennai Institute of Technology, India, which provided support under the following funding number CIT/CCM/2023/RP-013.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

Kalpana Kumar: writing—original draft and investigation. Sugumar Paramasivam: investigation and formal analysis. A. Dhamodharan: writing and editing. Eagambaram Murugan: supervision, conceptualization. Corresponding author: Correspondence to Munusamy Settu.

Corresponding author

Correspondence to S. Munusamy.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and/or animal participants

Research does not involve any Human Participants and/or Animals.

Consent to inform

No other relevant consent to inform.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Munusamy, S., Paramasivam, S. et al. Microwave-assisted rapid synthesis of GO/SnTe nanocomposite for electrochemical quantification of caffeine and pharmaceutical formulations. J Mater Sci: Mater Electron 35, 1749 (2024). https://doi.org/10.1007/s10854-024-13505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13505-4

Navigation