Skip to main content
Log in

High-performance CsPbBr3-xClx/Si heterojunction photodetectors for variable wavelength photodetection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

All inorganic perovskite CsPbX3 (X = Br, I, Cl) materials emerge as one of the popular materials in the field of optoelectronic devices due to their outstanding photoelectric properties. Their photoelectric detection performance and stability could be further improved by combining mixed halide perovskites with other semiconductor materials, achieving high-performance variable wavelength photodetectors. In this work, high-quality CsPbBr3-xClx microcrystals were successfully grown on silicon (Si) substrates by chemical vapor deposition (CVD) method. By varying the Br/Cl ratio, the prepared CsPbBr3-xClx heterojunction photodetectors exhibit excellent response time in the scale of microsecond and superior narrowband detection capability in a wide wavelength ranges and excellent environmental stability, achieving the maximum responsivity of 102.6 A/W and detectivity of 5.20 × 1012 Jones under 7.8µW /cm2 light illumination intensity. The results suggest an efficient and feasible strategy to the design and improvement of photodetectors for variable wavelength photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Y.Y. Zhou, Y.X. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019)

    Article  CAS  Google Scholar 

  2. H. Zhou, Z.N. Song, C.R. Grice, C. Chen, J. Zhang, Y.F. Zhu, R.H. Liu, H. Wang, Y.F. Yan, Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy 53, 880–886 (2018)

    Article  CAS  Google Scholar 

  3. G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Nano Lett. 16, 4838–4848 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Q. Xu, X. Wang, H. Zhang, W. Shao, J. Nie, Y. Guo, J. Wang, X. Ouyang, ACS Appl. Electron. Mater. 2, 879–884 (2020)

    Article  CAS  Google Scholar 

  5. J.X. Yu, G.X. Liu, C.M. Chen, Y. Li, M.R. Xu, T.L. Wang, G. Zhao, L. Zhang, Perovskite CsPbBr3 crystals: growth and applications. J. Mater. Chem. C 8, 6326–6341 (2020)

    Article  CAS  Google Scholar 

  6. X. Liu, X. Zhang, L. Li, J. Xu, S. Yu, X. Gong, J. Zhang, H. Yin, Stable Luminescence of CsPbBr3/nCdS core/shell perovskite quantum dots with AL self-passivation layer modification. ACS Appl. Mater. Interfaces 11, 40923–40931 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. L. Zhang, J. Zhang, Q. Shang, J. Song, C. Li, W. Du, S. Chen, X. Liu, B. Zou, P. Gao, Q. Zhang, Ultrafast antisolvent growth of single-crystalline CsPbCl3 microcavity for low-threshold room temperature blue lasing. ACS Appl. Mater. Interfaces 14, 21356–21362 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, 3D–2D-0D interface profiling for record efficiency all-inorganic CsPbBr I2 perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1703246 (2018)

    Article  Google Scholar 

  9. M.M.W. Iqbal, Q. Xie, M. Cai, X. Zou, Q. Zhang, R. Zeng, B. Zou, L. Liao, Q. Wan, Surface steered aligned gradient inorganic lead halide perovskite CsPbBr2I nanowires for use in photodetectors. Appl. Surf. Sci. 617, 156458 (2023)

    Article  CAS  Google Scholar 

  10. D.-H. Kwak, D.-H. Lim, H.-S. Ra, P. Ramasamy, J.-S. Lee, High performance hybrid graphene–CsPbBr3−xIx perovskite nanocrystal photodetector. RSC Adv. 6, 65252–65256 (2016)

    Article  CAS  Google Scholar 

  11. N.H. Makani, A. Sahoo, P. Pal, T. Paul, L.S. Tanwar, M. Singh, A. Ghosh, R. Banerjee, Onset of vacancy-mediated high activation energy leads to large ionic conductivity in two-dimensional layered Cs2PbI2Cl2 Ruddlesden-Popper halide perovskite. Phys. Rev. Mater. (2022). https://doi.org/10.1103/PhysRevMaterials.6.115002

    Article  Google Scholar 

  12. G. Abiram, F.H. Gourji, S. Pitchaiya, P. Ravirajan, T. Murugathas, D. Velauthapillai, Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-06319-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. L. Li, H. Dong, Y. Hu, T. Zeng, Y. Chen, K. Mensah-Darkwa, E.T. Acheampong, G. Ali, Y. Xie, Stabilizing red-emitting all-inorganic perovskite nanocrystals by a ligand-mediated room-temperature procedure. CrystEngComm 24, 6777–6785 (2022)

    Article  CAS  Google Scholar 

  14. Y.R. Park, H.H. Kim, S. Eom, W.K. Choi, H. Choi, B.R. Lee, Y. Kang, Luminance efficiency roll-off mechanism in CsPbBr3−xClx mixed-halide perovskite quantum dot blue light-emitting diodes. J. Mater. Chem. C 9, 3608–3619 (2021)

    Article  CAS  Google Scholar 

  15. A. Mishra, M. Alahbakhshi, R. Haroldson, Q. Gu, A.A. Zakhidov, J.D. Slinker, Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102006

    Article  PubMed  PubMed Central  Google Scholar 

  16. J. Pan, L.N. Quan, Y.B. Zhao, W. Peng, B. Murali, S.P. Sarmah, M.J. Yuan, L. Sinatra, N.M. Alyami, J.K. Liu, E. Yassitepe, Z.Y. Yang, O. Voznyy, R. Comin, M.N. Hedhili, O.F. Mohammed, Z.H. Lu, D.H. Kim, E.H. Sargent, O.M. Bakr, Adv. Mater. 28, 8718–8725 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Yue, S. Liu, B. Zhang, Z. Su, D. Zhu, Surface modification strategy based on molecular engineering of an organic cation toward spectrally stable deep-blue emission perovskites. J. Mater. Chem. C 10, 2067–2072 (2022)

    Article  CAS  Google Scholar 

  19. M. Kumar, V. Pawar, P.K. Jha, P.A. Jha, P. Singh, Compositional degradation with Br content in Cesium lead halide CsPbBrxI3-x. J. Solid State Chem. 308, 122893 (2022)

    Article  CAS  Google Scholar 

  20. S.S. Periyal, M. Jagadeeswararao, S.E. Ng, R.A. John, N. Mathews, Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.202000514

    Article  Google Scholar 

  21. Z. Yang, Q. Xu, X.D. Wang, J.F. Lu, H. Wang, F.T. Li, L. Zhang, G.F. Hu, C.F. Pan, Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: low-temperature growth and application for high-performance photodetectors. Adv. Mater. 30, 1802110 (2018)

    Article  Google Scholar 

  22. P. Gui, Z. Chen, B. Li, F. Yao, X. Zheng, Q. Lin, G. Fang, High-performance photodetectors based on single all-inorganic CsPbBr3 perovskite microwire. ACS Photonics 5, 2113–2119 (2018)

    Article  CAS  Google Scholar 

  23. S. Han, Y. Yao, X. Liu, B. Li, C. Ji, Z. Sun, M. Hong, J. Luo, Small (2019). https://doi.org/10.1002/smll.201901194

    Article  PubMed  PubMed Central  Google Scholar 

  24. A. Surendran, X. Yu, R. Begum, Y. Tao, Q.J. Wang, W.L. Leong, All inorganic mixed halide perovskite nanocrystal-graphene hybrid photodetector: from ultrahigh gain to photostability. ACS Appl. Mater. Interfaces 11, 27064–27072 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. J. Ko, H. Je, K. Kim, T. Eom, J.F. Joung, S. Park, J. Bang, D.H. Choi, Universal surface tailoring of perovskite nanocrystals via organic pseudohalide ligands applicable to green and blue light-emitting diodes. J. Mater. Chem. C 10, 18226–18233 (2022)

    Article  CAS  Google Scholar 

  26. G. Zhang, C. Xie, P. You, S. Li, Organic-Inorganic Hybrid Devices—Perovskite-Based Devices, in Introduction to Organic Electronic Devices. ed. by G. Zhang, C. Xie, P. You, S. Li (Springer Nature Singapore, Singapore, 2022), pp.283–307

    Chapter  Google Scholar 

  27. T. Chen, X.-C. Ru, Z.-Y. Ma, L.-Z. Feng, K.-H. Song, J. Ge, B.-S. Zhu, J.-N. Yang, H.-B. Yao, Tetrafluoroborate-passivated CsPbBrxCl3–x nanocrystals for spectrally stable pure blue perovskite light-emitting diodes. ACS Appl. Nano. Mater. 7, 4474–4480 (2024)

    Article  CAS  Google Scholar 

  28. A. Najim, B. Hartiti, H. Absike, H.J. Tchognia Nkuissi, H. Labrim, S. Fadili, P. Thevenin, M. Ertugrul, (2022), Mat Sci Semicon Proc, 141: 106442

  29. W. Wang, J. Su, L. Zhang, Y. Lei, D. Wang, D. Lu, Y. Bai, Growth of mixed-halide perovskite single crystals. CrystEngComm 20, 1635–1643 (2018)

    Article  CAS  Google Scholar 

  30. P. Gui, J. Li, X. Zheng, H. Wang, F. Yao, X. Hu, Y. Liu, G. Fang, Self-driven all-inorganic perovskite microplatelet vertical Schottky junction photodetectors with a tunable spectral response. J. Mater. Chem. C 8, 6804–6812 (2020)

    Article  CAS  Google Scholar 

  31. Y. An, X. Shen, Y. Zhang, D. Liu, Y. Wu, P. Guo, W. Zhou, Y. Hao, Color-tunable photoluminescence and whispering gallery mode lasing of alloyed CsPbCl3(1–x)Br3x microstructures. Adv. Mater. Interfaces 7, 1902126 (2020)

    Article  CAS  Google Scholar 

  32. Y. Zhao, Y. Dai, Q. Wang, Y. Dong, T. Song, A. Mudryi, Q. Chen, Y. Li, Anions-exchange-induced efficient carrier transport at CsPbBrxCl3-x/TiO2 interface for photocatalytic activation of C(sP3)−H bond in toluene oxidation. ChemCatChem 13, 2592–2598 (2021)

    Article  CAS  Google Scholar 

  33. T.G. Liashenko, E.D. Cherotchenko, A.P. Pushkarev, V. Pakštas, A. Naujokaitis, S.A. Khubezhov, R.G. Polozkov, K.B. Agapev, A.A. Zakhidov, I.A. Shelykh, S.V. Makarov, Electronic structure of CsPbBr3−xClx perovskites: synthesis, experimental characterization, and DFT simulations. Phys. Chem. Chem. Phys. 21, 18930–18938 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. G. Zhang, P. Song, Z. Shen, B. Qiao, D. Song, J. Cao, Z. Xu, W. Swelm, A. Al-Ghamdi, S. Zhao, CsPbBr3@CsPbBr3–xClx perovskite core-shell heterojunction nanowires via a postsynthetic method with HCl gas. ACS Omega 5, 11578–11584 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H.M. Ghaithan, S.M.H. Qaid, Z.A. Alahmed, H.S. Bawazir, A.S. Aldwayyan, Materials, 16 (2023).

  36. A.A. Lohar, A. Shinde, R. Gahlaut, A. Sagdeo, S. Mahamuni, J. Phys. Chem. C 122, 25014–25020 (2018)

    Article  CAS  Google Scholar 

  37. K.-H. Wang, Y. Peng, J. Ge, S. Jiang, B.-S. Zhu, J. Yao, Y.-C. Yin, J.-N. Yang, Q. Zhang, H.-B. Yao, Efficient and color-tunable quasi-2D CsPbBrxCl3–x perovskite blue light-emitting diodes. ACS Photonics 6, 667–676 (2018)

    Article  Google Scholar 

  38. L. Guo, X. Zhang, Y. Zhang, T. Yu, C. Cheng, Y. Cheng, X. Li, J. Zhang, S. Xu, Y. Cao, B. Chen, Color-adjustable CsPbBr3-xIx quantum dots glasses for wide color gamut display. J. Non-Cryst. Solids 551, 120432 (2021)

    Article  CAS  Google Scholar 

  39. J.-H. Cha, J.H. Han, W. Yin, C. Park, Y. Park, T.K. Ahn, J.H. Cho, D.-Y. Jung, Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 8, 565–570 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. V. Gupta, G. Lucarelli, S. Castro-Hermosa, T. Brown, M. Ottavi, Characterisation & modelling of perovskite-based synaptic memristor device. Microelectron. Reliab. 111, 113708 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the Natural Science Foundation of Zhejiang Province (Nos. LQ18A040005 and LY20F040006), the National Natural Science Foundation of China (Nos. 11804300 and 61704154), and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 17062062-Y.

Funding

This article was funded by Natural Science Foundation of Zhejiang Province, LQ18A040005, Ping Lin, LY20F040006, Lingbo Xu, National Natural Science Foundation of China, 11804300, Ping Lin, 61704154, Lingbo Xu, Science Foundation of Zhejiang Sci-Tech University (ZSTU), 17062062-Y, Ping Lin.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Wanggao Nie and Ping Lin proposed the project. Material preparation, data collection and analysis were performed by Wanggao Nie, Jingyi Liu and Lairong Yan. The first draft of the manuscript was written by Wanggao Nie and Ping Lin, and all authors commented on previous versions of the manuscript. Ping Lin and Can Cui supervise the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ping Lin or Can Cui.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 825 kb)

See the supplementary material for more details about the photographs, photoelectrical parameters, and photocurrent under different light illumination intensities

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W., Liu, J., Yan, L. et al. High-performance CsPbBr3-xClx/Si heterojunction photodetectors for variable wavelength photodetection. J Mater Sci: Mater Electron 35, 1755 (2024). https://doi.org/10.1007/s10854-024-13502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13502-7

Navigation