Skip to main content
Log in

Optical, structural, electrical, and morphological properties of (Ga:B) co-doped CdS thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gallium and Boron co-doped Cadmium Sulfides (CdS) films were prepared using the sol–gel technique. CdS and CdS/Ga:B with various concentration films were prepared on a glass substrate by immersing it in the proper aqueous solutions for 2 h and annealing at 450 °C for 2 h. The transmittance spectra acquired a blue-shifting by adding Ga and/or B. Adding only gallium reveals the most blue-shifting, indicating an increase in the film’s band edge. Moreover, other optical properties were investigated in detail, such as extinction coefficient k, Index of refraction n, and bandgap energy (Eg). The bandgap energy (Eg) has been investigated via the Tauc model. Eg for the un-doped CdS is around 2.36 eV, while it increases by introducing Ga and/or B for all other samples except for CdS/Ga:B (0.25:0.75)%. The X-ray spectra show a hexagonal structure for all films. The crystalline size for the un-doped CdS thin film is 11.19 nm. However, it decreases with CdS/Ga 1% and CdS/B 1% to be 8.23 nm 7.79 nm, respectively. However, other structural properties were investigated in detail, such as Microstrain ε, Dislocation density δ, and Crystallite density N. The average electrical conductivity of CdS is 5.61 μS/cm, which decreases by adding Ga and/or B, reaching a minimum value (0.81 μS/cm) for CdS/Ga:B (0.50:0.50)%. SEM image for un-doped CdS film was demonstrated accumulated individual crystals with an average size between 80 and 120 nm in isolated islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data provided in this manuscript are either collected from our apparatus or derived from the raw data collected. They are available at any time for readers.

References

  1. I. Yahia, I. El Radaf, A. Salem, G. Sakr, Chemically deposited Ni-doped CdS nanostructured thin films: optical analysis and current–voltage characteristics. J. Alloys Compds. 776, 1056–1062 (2019)

    Article  CAS  Google Scholar 

  2. K. Das, S. De, Optical properties of the type-II core−shell TiO2@ CdS nanorods for photovoltaic applications. J. Phys. Chem. C 113(9), 3494–3501 (2009)

    Article  CAS  Google Scholar 

  3. A. Ashok, G. Regmi, A. Romero-Núñez, M. Solis-López, S. Velumani, H. Castaneda, Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. J. Mater. Sci. Mater. Electron. 31, 7499–7518 (2020)

    Article  CAS  Google Scholar 

  4. S. Yılmaz, S. Töreli, İ Polat, M. Olgar, M. Tomakin, E. Bacaksız, Enhancement in the optical and electrical properties of CdS thin films through Ga and K co-doping. Mater. Sci. Semicond. Process. 60, 45–52 (2017)

    Article  Google Scholar 

  5. H. Khallaf et al., In-situ boron doping of chemical-bath deposited CdS thin films. Phys. Status Solidi (a) 206(2), 256–262 (2009)

    Article  CAS  Google Scholar 

  6. A.K. Bansal et al., Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J. Phys. Chem. C 120(3), 1871–1880 (2016)

    Article  CAS  Google Scholar 

  7. M. Shkir, I. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, S. AlFaify, A facile spray pyrolysis fabrication of Sm: CdS thin films for high-performance photodetector applications. Sens. Actuators, A 306, 111952 (2020)

    Article  CAS  Google Scholar 

  8. S.G. Kumar, R. Kavitha, P. Nithya, Tailoring the CdS surface structure for photocatalytic applications. J. Environ. Chem. Eng. 8(5), 104313 (2020)

    Article  CAS  Google Scholar 

  9. W. Bu et al., Homojunction between cubic/hexagonal CdS nanocrystal for high and fast response to n-propanol. Sens. Actuators, B Chem. 369, 132281 (2022)

    Article  CAS  Google Scholar 

  10. I. El Radaf, T.A. Hameed, I. Yahia, Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater. Res. Express 5(6), 066416 (2018)

    Article  Google Scholar 

  11. V. Bala, S. Tripathi, R. Kumar, Correlation of photoluminescence quenching with charge transport in group III (Al, Ga & In) elements doped CdS/PVA NCs: experimental and first principles studies. Mater. Lett. 132, 38–40 (2014)

    Article  CAS  Google Scholar 

  12. J. Yang, R. Liu, S. Huang, Y. Shao, Y. Huang, Y. Yu, Enhanced photocatalytic activity and stability of interstitial Ga-doped CdS: combination of experiment and calculation. Catal. Today 224, 104–113 (2014)

    Article  CAS  Google Scholar 

  13. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl. Surf. Sci. 255(7), 4129–4134 (2009)

    Article  CAS  Google Scholar 

  14. C. Xie et al., Surface charge transfer induced p-CdS nanoribbon/n-Si heterojunctions as fast-speed self-driven photodetectors. J. Mater. Chem. C 3(24), 6307–6313 (2015)

    Article  CAS  Google Scholar 

  15. J. Lee, Raman scattering and photoluminescence analysis of B-doped CdS thin films. Thin Solid Films 451, 170–174 (2004)

    Article  Google Scholar 

  16. J.H. Lee, J.S. Yi, K.J. Yang, J.H. Park, R.D. Oh, Electrical and optical properties of boron doped CdS thin films prepared by chemical bath deposition. Thin Solid Films 431, 344–348 (2003)

    Article  Google Scholar 

  17. A. Fakhri, R. Khakpour, Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties. J. Lumin. 160, 233–237 (2015)

    Article  CAS  Google Scholar 

  18. K.K. Challa, E. Magnone, E.T. Kim, Highly photosensitive properties of CdS thin films doped with boron in high doping levels. Mater. Lett. 85, 135–137 (2012)

    Article  CAS  Google Scholar 

  19. J. Cai et al., Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications. Phys. Chem. Chem. Phys. 13(32), 14663–14667 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. V. Novruzov, E. Keskenler, M. Tomakin, S. Kahraman, O. Gorur, Effects of ultraviolet light on B-doped CdS thin films prepared by spray pyrolysis method using perfume atomizer. Appl. Surf. Sci. 280, 318–324 (2013)

    Article  CAS  Google Scholar 

  21. K. Liu et al., Fe-doped and (Zn, Fe) co-doped CdS films: could the Zn doping affect the concentration of Fe2+ and the optical properties? Physica B 389(2), 248–251 (2007)

    Article  CAS  Google Scholar 

  22. S. Khajuria, S. Sanotra, J. Ladol, H.N. Sheikh, Synthesis, characterization and optical properties of cobalt and lanthanide doped CdS nanoparticles. J. Mater. Sci. Mater. Electron. 26(9), 7073–7080 (2015)

    Article  CAS  Google Scholar 

  23. S. Yılmaz, Y. Atasoy, M. Tomakin, E. Bacaksız, Comparative studies of CdS, CdS: Al, CdS: Na and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299–307 (2015)

    Article  Google Scholar 

  24. I.H. Hadi, K.S. Khashan, D. Sulaiman, Cadmium sulphide (CdS) nanoparticles: preparation and characterization. Mater. Today: Proc. 42, 3054–3056 (2021)

    CAS  Google Scholar 

  25. Y.X. Pan et al., Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water. Chemsuschem 7(9), 2537–2544 (2014)

    Article  PubMed  CAS  Google Scholar 

  26. A. Ghasempour et al., Cadmium sulfide nanoparticles: preparation, characterization, and biomedical applications. Molecules 28(9), 3857 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. N. Badry, A. Ebnawaled, M. Wahman, Cadmium sulfide nanoparticles: preparation, characterization, and biomedical applications. SVU-Int. J. Med. Sci. 7(1), 842–864 (2024)

    Google Scholar 

  28. X. Yue, S. Yi, R. Wang, Z. Zhang, S. Qiu, Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci. Rep. 6(1), 22268 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. A. Rmili et al., Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis. J. Alloys Compds. 557, 53–59 (2013)

    Article  CAS  Google Scholar 

  30. Q. M. Al-Bataineh et al., Synthesis, Crystallography, Microstructure, Crystal Defects, Optical and Optoelectronic Properties of ZnO: CeO2 Mixed Oxide Thin Films, in Photonics, vol 7, no. 4 (Multidisciplinary Digital Publishing Institute, 2020) p. 112

  31. Q.M. Al-Bataineh, A. Alsaad, A. Ahmad, A. Telfah, A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles. Heliyon 6(6), e04177 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. El-Bana, I. El Radaf, S. Fouad, G. Sakr, Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J. Alloys Compds. 705, 333–339 (2017)

    Article  CAS  Google Scholar 

  33. A. A. Saeed, N. J. Ghdeeb, and F. J. Kadhum, Effect of diode laser on physical properties of CdS thin films, in Journal of Physics: Conference Series, vol 1432, no. 1 (IOP Publishing, 2020), p.012034.

  34. D. Bower, Morphology and motion, in An Introduction to Polymer Physics. (Cambridge University Press, Cambridge, 2002), pp.117–161

    Chapter  Google Scholar 

  35. A.A. Ahmad, I.A. Aljarrah, M.D. Telfah, A.M. Alsaad, A. Telfah, Optical, chemical, electrical, and morphological properties of PEO–Nb-doped KMnO4 thin films. J. Mater. Sci. Mater. Electron. 33(13), 10585–10595 (2022)

    Article  CAS  Google Scholar 

  36. A.M. Alsaad et al., The structural, optical, thermal, and electrical properties of synthesized PEO/GO thin films. Appl. Phys. A 128(8), 1–11 (2022)

    Article  Google Scholar 

  37. K. Usharani, A. Balu, V. Nagarethinam, M. Suganya, Characteristic analysis on the physical properties of nanostructured Mg-doped CdO thin films—doping concentration effect. Prog. Nat. Sci.: Mater. Int. 25(3), 251–257 (2015)

    Article  CAS  Google Scholar 

  38. X. Liu, Q. Zhang, J.N. Yip, Q. Xiong, T.C. Sum, Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. Nano Lett. 13(11), 5336–5343 (2013)

    Article  PubMed  CAS  Google Scholar 

  39. G. Sungi, M.E. Samiji, N.R. Mlyuka, E.T. Shana, Effect of Ga doping on optical transmittance and electrical conductivity of CdS thin films. J. Mater. Sci. Mater. Electron. 34(8), 768 (2023)

    Article  CAS  Google Scholar 

  40. G. Abbady, A. Qasem, A.M. Abd-Elnaiem, Optical parameters and electronic properties for the transition of the amorphous-crystalline phase in Ge20Te80 thin films. J. Alloys Compds. 842, 155705 (2020)

    Article  CAS  Google Scholar 

  41. A.Y. Fasasi et al., Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Am. J. Mater. Synth. Process 3, 12 (2018)

    Google Scholar 

  42. A.M. Abd-Elnaiem, S. Moustafa, A. Abdelraheem, M. Abdel-Rahim, A. Mahmoud, Effects of annealing on structural and optical properties of Ge20Se70Sn10 thin films for optoelectronic applications. J. Non-Cryst. Solids 549, 120353 (2020)

    Article  CAS  Google Scholar 

  43. A.M. Alsaad et al., Optical, structural, and crystal defects characterizations of dip synthesized (Fe–Ni) Co-doped ZnO thin films. Materials 13(7), 1737 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. K. Kumar, V.C. Vincent, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, Investigations of solid state, optical, NLO, dielectric and mechanical behaviour of Methyl para-Hydroxybenzoate crystal. Optik 226, 165738 (2021)

    Article  CAS  Google Scholar 

  45. A.A. Ahmad, Q.M. Al-Bataineh, A.M. Alsaad, T.O. Samara, K.A. Al-izzy, Optical properties of hydrophobic ZnO nano-structure based on antireflective coatings of ZnO/TiO2/SiO2 thin films. Phys. B: Condens. Matter 593, 412263 (2020)

    Article  CAS  Google Scholar 

  46. F. Willars-Rodríguez, I. Chávez-Urbiola, M. Hernández-Landaverde, P. Vorobiev, R. Ramírez-Bon, Y.V. Vorobiev, Effects of tin-doping on cadmium sulfide (CdS: Sn) thin-films grown by light-assisted chemical bath deposition process for solar photovoltaic cell. Thin Solid Films 653, 341–349 (2018)

    Article  Google Scholar 

  47. M. U. I. B. M. Rahimi, X-ray powder diffraction (XRD) (2020)

  48. R.G. Solanki, P. Rajaram, P. Bajpai, Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis. Ind. J. Phys. 92(5), 595–603 (2018)

    Article  CAS  Google Scholar 

  49. T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, A. Hussain, Multi metal oxide NiO–CdO–ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46(2), 2421–2437 (2020)

    Article  CAS  Google Scholar 

  50. A.A. Al-Ghamdi et al., Semiconducting properties of Al doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 512–517 (2014)

    Article  CAS  Google Scholar 

  51. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  Google Scholar 

  52. I.A. Aljarrah, A.A. Ahmad, A. Migdadi, Influence of lithium ions on the structural, optical, and electrical properties titanium niobium oxide thin films. J. Mater. Sci. Mater. Electron. 34(31), 2124 (2023)

    Article  CAS  Google Scholar 

  53. A.A. Ahmad, A.M. Alsaad, I.A. Aljarrah, Q.M. Al-Bataineh, A.D. Telfah, Optical, electronic, and structural properties of different nanostructured ZnO morphologies. Eur. Phys. J. Plus 137(6), 752 (2022)

    Article  CAS  Google Scholar 

  54. R. Marotti, P. Giorgi, G. Machado, E. Dalchiele, Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006)

    Article  CAS  Google Scholar 

  55. D.W. Fu, W. Zhang, H.L. Cai, J.Z. Ge, Y. Zhang, R.G. Xiong, Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv. Mater. 23(47), 5658–5662 (2011)

    Article  PubMed  CAS  Google Scholar 

  56. A.A. Akl, A. Hassanien, Microstructure and crystal imperfections of nanosized CdSxSe1− X thermally evaporated thin films. Superlattices Microstruct. 85, 67–81 (2015)

    Article  CAS  Google Scholar 

  57. A.A. Akl, S.A. Mahmoud, S. Al-Shomar, A. Hassanien, Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater. Sci. Semicond. Process. 74, 183–192 (2018)

    Article  CAS  Google Scholar 

  58. D.-W. Fu et al., Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339(6118), 425–428 (2013)

    Article  PubMed  CAS  Google Scholar 

  59. M. Dawber, K. Rabe, J. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77(4), 1083 (2005)

    Article  CAS  Google Scholar 

  60. J. Scott, Applications of modern ferroelectrics. Science 315(5814), 954–959 (2007)

    Article  PubMed  CAS  Google Scholar 

  61. H. Moualkia, S. Hariech, M. Aida, N. Attaf, E. Laifa, Growth and physical properties of CdS thin films prepared by chemical bath deposition. J. Phys. D Appl. Phys. 42(13), 135404 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Jordan University of Science and Technology (JUST) and the Deanship of Scientific Research for their support in research project 465/2024.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A. A. Ahmad, I.A. Aljarrah, and A.A. Bani-Salameh; Data curation, I.A. Aljarrah, A.A. Bani-Salameh; Formal analysis, I.A. Aljarrah, A. A. Ahmad, A A.A. Bani-Salameh, Gabriela Toader; Funding acquisition, A. A. Ahmad; Investigation, I.A. Aljarrah,; Methodology, A. A. Ahmad, A.A. Bani-Salameh,;Project administration, A. A. Ahmad, Gabriela Toader; Resources and Supervision, A. A. Ahmad, Gabriela Toader; Visualization, A. A. Ahmad; Writing—original draft, A. A. Ahmad, I.A. Aljarrah, A.A. Bani-Salameh; Writing—review & editing, A. A. Ahmad, and, I.A. Aljarrah, Gabriela Toader.

Corresponding author

Correspondence to Ahmad A. Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A., Aljarrah, I.A., Bani-Salameh, A.A. et al. Optical, structural, electrical, and morphological properties of (Ga:B) co-doped CdS thin films. J Mater Sci: Mater Electron 35, 1730 (2024). https://doi.org/10.1007/s10854-024-13500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13500-9

Navigation