Skip to main content
Log in

Effects of curing condition and solder mask on substrate warpage: an experimental and simulation study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The warpage of the package substrate mainly originates from the material property and size variations of individual components, especially when multiple components are involved. To maintain the substrate warpage within acceptable limits, it’s crucial to fine-tune component parameters carefully, choosing appropriate materials and processing conditions. The current study investigates the factors influencing substrate warpage and explores the methods to mitigate it with the assistance of finite element analysis. Glass fiber reinforced epoxy-based substrates were prepared under different curing temperatures, and characterized by thermo-mechanical analysis and mechanical testing. A finite element simulation model of the bare carrier board was developed using ABAQUS software. The results show that the curing temperature impacts the coefficient of thermal expansion (CTE), strength and modulus of the substrate. The differences in CTE and dimensional parameters among the component materials strongly influence substrate warpage. While the curing conditions affect bare carrier board warpage to some extent, the type and thickness of solder mask have more significant effects and warpage can be mitigated by properly choosing and applying solder masks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on reasonable request.

References

  1. S.Y. Park, S.Y. On, J. Kim, J. Lee, T.-S. Kim, B.L. Wardle, S.S. Kim, ACS Appl. Mater. Interfaces 15, 11024–11032 (2023). https://doi.org/10.1021/acsami.2c21229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S.Y. Yang, Y.-D. Jeon, S.-B. Lee, K.-W. Paik, Microelectron. Reliab. 46, 512–522 (2006). https://doi.org/10.1016/j.microrel.2005.06.007

    Article  CAS  Google Scholar 

  3. J.-H. Baek, D.-W. Park, G.-H. Oh, D.-O. Kawk, S.S. Park, H.-S. Kim, Mater. Sci. Semicond. Process. 148, 106758 (2022). https://doi.org/10.1016/j.mssp.2022.106758

    Article  CAS  Google Scholar 

  4. H. Wang, Y. Liu, J. Zhang, T. Li, Z. Hu, Y. Yu, RSC Adv. 5, 11358–11370 (2015). https://doi.org/10.1039/c4ra13678k

    Article  CAS  Google Scholar 

  5. R. Saito, Y. Yamaguchi, S. Matsubara, S. Moriguchi, Y. Mihara, T. Kobayashi, K. Terada, Int. J. Solids Struct. 190, 199–215 (2020). https://doi.org/10.1016/j.ijsolstr.2019.11.010

    Article  CAS  Google Scholar 

  6. L. Granado, S. Kempa, S. Bremmert, L.J. Gregoriades, F. Brüning, E. Anglaret, N. Fréty, J. Microelectron. Electron. Packag. 14, 45–50 (2017). https://doi.org/10.4071/imaps.359903

    Article  Google Scholar 

  7. C Kim, T Lee, H Choi, M Kim, T Kim, 2014 Electronic Components & Technology Conference. 1004, 1009.

  8. C. Kim, T.-I. Lee, M. Kim, T.-S. Kim, Polymers 7, 985–1004 (2015). https://doi.org/10.3390/polym7060985

    Article  CAS  Google Scholar 

  9. J Kim, S Lee, J Lee, S Jung, C Ryu, Unit Process Development of Advanced Circuit Interconnect. 1, 12.

  10. C. Selvanayagam, R. Mandal, N. Raghavan, Microelectron. Reliab. 88–90, 817–823 (2018). https://doi.org/10.1016/j.microrel.2018.07.110

    Article  Google Scholar 

  11. Y. Duan, G. Liu, W. Wang, Q. Deng, J. Li, R. Cao, C. Wang, Microelectron. Reliab. 151, 115260 (2023). https://doi.org/10.1016/j.microrel.2023.115260

    Article  Google Scholar 

  12. M. Shih, K. Chen, T. Lee, D. Tarng, C.P. Hung, IEEE transactions on components. Packag. Manuf. Technol. 11, 690–696 (2021). https://doi.org/10.1109/tcpmt.2021.3065647

    Article  CAS  Google Scholar 

  13. J Talledo, R Real, A Cadag, 29th ASEMEP national technical symposium. 1, 7.

  14. A. Inamdar, Y.-H. Yang, A. Prisacaru, P. Gromala, B. Han, Polym. Degrad. Stab. (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109572

    Article  Google Scholar 

  15. D.S. Kim, M.J. Han, J.R. Lee, Polym. Eng. Sci. 35, 1353–1358 (2004). https://doi.org/10.1002/pen.760351705

    Article  Google Scholar 

  16. X. Liu, Y. Yu, S. Li, Polymer 47, 3767–3773 (2006). https://doi.org/10.1016/j.polymer.2006.03.102

    Article  CAS  Google Scholar 

  17. F. Gao, J. Shi, X. Zhang, X. Wang, L. Weng, X. Sun, L. Yu, C. Li, Polym. Compos. 43, 7200–7210 (2022). https://doi.org/10.1002/pc.26783

    Article  CAS  Google Scholar 

  18. H.A. Khonakdar, J. Morshedian, U. Wagenknecht, S.H. Jafari, Polymer 44, 4301–4309 (2003). https://doi.org/10.1016/s0032-3861(03)00363-x

    Article  CAS  Google Scholar 

  19. Z. Lan, J. Deng, Z. Xu, Z. Ye, Y. Nie, Polymers (2023). https://doi.org/10.3390/polym15122734

    Article  PubMed  PubMed Central  Google Scholar 

  20. C.L. Hsieh, W.H. Tuan, Mater. Sci. Eng. A 396, 202–205 (2005). https://doi.org/10.1016/j.msea.2005.01.029

    Article  CAS  Google Scholar 

  21. C. Tz-Cheng, G. Che-Li, H. Hong-Wei, L. Yi-Shao, IEEE Trans. Device Mater. Reliab. 11, 339–348 (2011). https://doi.org/10.1109/tdmr.2011.2135860

    Article  Google Scholar 

  22. P. Hutapea, J.L. Grenestedt, M. Modi, M. Mello, K. Frutschy, Microelectron. Eng. 83, 557–569 (2006). https://doi.org/10.1016/j.mee.2005.12.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the Department of Science and Technology of Guangdong Province (Project No. 2023B0101020004), National Natural Science Foundation of China (NSFC, No. 62374080), and Shenzhen Key Laboratory of Intelligent Manufacturing for Continuous Carbon Fibre Reinforced Composites (Project No. ZDSYS20220527171404011) for the financial support.

Funding

This work was supported by Ministry of Industry and Information Technology of China, National Natural Science Foundation of China (NSFC, No. 62374080), and Shenzhen Key Laboratory of Intelligent Manufacturing for Continuous Carbon Fibre Reinforced Composites (Project No. ZDSYS20220527171404011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Guowei Fan: Material preparation, data collection and analysis, simulation, manuscript drafting and revision; Jie Xu, Junqi Tang, Zeming Fang, Li Luo and Qianfa Liu: Experiment design and execution, data analysis; Dashun Liu, Dong Lu and Ke Xue: Data validation, simulation, manuscript review; Ke Wang: Supervision, conceptualization, manuscript review and editing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ke Wang.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non‐financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Hu, Z., Xu, J. et al. Effects of curing condition and solder mask on substrate warpage: an experimental and simulation study. J Mater Sci: Mater Electron 35, 1734 (2024). https://doi.org/10.1007/s10854-024-13499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13499-z

Navigation