Skip to main content
Log in

A novel ZnO/FeOCl composite as a photo-Fenton catalyst for degradation tetracycline under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of novel ZnO/FeOCl photo-Fenton catalysts were prepared using a simple calcination method. These composite catalysts were evaluated for tetracycline (TC) degradation under simulated sunlight. The photo-Fenton tests revealed that the ZnO/FeOCl composite catalysts exhibited higher activity than pure FeOCl due to the presence of ZnO. Specifically, the degradation of TC by 20% ZnO/FeOCl reached 93.9% in 60 min, which was attributed to the formation of an n–n heterojunction between ZnO and FeOCl that enhanced the separation efficiency of photogenerated electron–hole pairs. Additionally, the TC removal efficiency remained at 84.4% after four cycles, indicating good structural stability of the composite catalyst. A proposed mechanism for TC degradation by ZnO/FeOCl catalysts, based on free radical trapping experiments, suggested that hydroxyl radicals (·OH) were the primary active species. This study provides new insights into the synthesis of photo-Fenton catalysts and the efficient treatment of antibiotic-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All relevant data are within the paper.

References

  1. Y. Chen, C. Jiang, Y. Wang, R. Song, Y. Tan, Y. Yang, Z. Zhang, Environ. Sci. Technol. 56, 14439–14451 (2022). https://doi.org/10.1021/acs.est.2c03413

    Article  CAS  PubMed  Google Scholar 

  2. A.E. Savarino, V. Terio, R. Barrasso, E. Ceci, S. Panseri, L.M. Chiesa, E. Bonerba, Ital. J. Food Safety 9, 8678–8678 (2020). https://doi.org/10.4081/ijfs.2020.8678

    Article  Google Scholar 

  3. F. Zhao, L. Yang, J. Tang, L. Fang, X. Yu, M. Li, L. Chen, Sci. Total. Environ. (2023). https://doi.org/10.1016/j.scitotenv.2023.161493

    Article  PubMed  PubMed Central  Google Scholar 

  4. F. Li, X. Dai, L. Zhang, Z. Zhang, H. Wu, J. Li, J. Guo, J. Mater. Sci.-Mater. Electron. (2024). https://doi.org/10.1007/s10854-024-12258-4

    Article  Google Scholar 

  5. K. Joubrane, A. Jammoul, R. Daher, S. Ayoub, M. El Jed, M. Hneino, K. El Hawari, M. Al Iskandarani, Z. Daher, Int. Dairy J. (2022). https://doi.org/10.1016/j.idairyj.2022.105455

    Article  Google Scholar 

  6. T. Li, C. Liu, J. Lu, G.K. Gaurav, W. Chen, J. Taiwan Inst. Chem. Eng. 106, 99–109 (2020). https://doi.org/10.1016/j.jtice.2019.10.004

    Article  CAS  Google Scholar 

  7. M. Przenioslo-Siwczynska, E. Patyra, A. Grelik, M. Chylek-Purchala, B. Kozak, K. Kwiatek, Molecules (2020). https://doi.org/10.3390/molecules25092162

    Article  PubMed  PubMed Central  Google Scholar 

  8. S.E. Mshana, C. Sindato, M.I. Matee, L.E.G. Mboera, Antibiot.-Basel (2021). https://doi.org/10.3390/antibiotics10080976

    Article  Google Scholar 

  9. S. Ren, S. Wang, Y. Liu, Y. Wang, F. Gao, Y. Dai, Sep. Sci. Technol. 58, 2578–2602 (2023). https://doi.org/10.1080/01496395.2023.2259079

    Article  CAS  Google Scholar 

  10. E.L. Thiang, C.Y.S. Chai, C.W. Lee, H. Takada, A.J. Wang, L.C. Chai, C.W. Bong, Sains Malays 51, 345–357 (2022). https://doi.org/10.17576/jsm-2022-5102-02

    Article  CAS  Google Scholar 

  11. X. Guo, L. Xiaojun, A. Zhang, Z. Yan, S. Chen, N. Wang, J. Environ. Sci. Health B. 55, 193–209 (2019). https://doi.org/10.1080/03601234.2019.1679563

    Article  CAS  PubMed  Google Scholar 

  12. Y. Amangelsin, Y. Semenova, M. Dadar, M. Aljofan, G. Bjorklund, Antibiot.-Basel (2023). https://doi.org/10.3390/antibiotics12030440

    Article  Google Scholar 

  13. A. Balakrishnan, M. Chinthala, R.K. Polagani, D.-V.N. Vo, Environ. Res. (2023). https://doi.org/10.1016/j.envres.2022.114660

    Article  PubMed  Google Scholar 

  14. C. Kong, Y. Liu, H. Zeng, L. Zhang, W. Wang, J. Li, H. Wu, K. Wu, J. Guo, J. Environ. Chem. Eng. (2023). https://doi.org/10.1016/j.jece.2023.111551

    Article  PubMed  PubMed Central  Google Scholar 

  15. Z. Sun, Y. Zhang, S. Guo, J. Shi, C. Shi, K. Qu, H. Qi, Z. Huang, V. Murugadoss, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. 5, 1566–1581 (2022). https://doi.org/10.1007/s42114-022-00477-4

    Article  CAS  Google Scholar 

  16. L. Zhang, X. Wu, J. Li, Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2021.133309

    Article  PubMed  PubMed Central  Google Scholar 

  17. Z. Cao, Y. Jia, Q. Wang, H. Cheng, Appl. Clay Sci. (2021). https://doi.org/10.1016/j.clay.2021.106213

    Article  Google Scholar 

  18. C. Liu, H. Dai, C. Tan, Q. Pan, F. Hu, X. Peng, Appl. Catal. B-Environ. (2022). https://doi.org/10.1016/j.apcatb.2022.121326

    Article  Google Scholar 

  19. J. Li, J. You, Z. Wang, Y. Zhao, J. Xu, X. Li, H. Zhang, J. Environ. Chem. Eng. (2022). https://doi.org/10.1016/j.jece.2022.108329

    Article  PubMed  PubMed Central  Google Scholar 

  20. J. Wang, Y.J. Li, Q.H. Jiang, S.P. Tong, Process. Saf. Environ. Prot. 172, 652–658 (2023). https://doi.org/10.1016/j.psep.2023.02.050

    Article  CAS  Google Scholar 

  21. Z.X. Nie, C.J. Sui, X.B. Xie, S.Q. Ni, L.S. Kong, Y.F. Wang, J.H. Zhan, Appl. Catal. B-Environ. Energy (2024). https://doi.org/10.1016/j.apcatb.2024.123819

    Article  Google Scholar 

  22. J. Zhao, M. Ji, J. Di, Y. Zhang, M. He, H. Li, J. Xia, J. Photochem. Photobiol. A-Chem. (2020). https://doi.org/10.1016/j.jphotochem.2019.112343

    Article  Google Scholar 

  23. Z. Mohammadpour, S. Ghasemzadeh, E. Askari, F.M. Jebeli, Colloid. Surf. A-Physicochem. Eng. Asp. (2021). https://doi.org/10.1016/j.colsurfa.2021.126793

    Article  Google Scholar 

  24. J. Song, M. Zhang, C. Yan, X. Zhao, G. Liu, J. Zhang, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155544

    Article  Google Scholar 

  25. X. Zhao, Z. Zhang, Curr. Pollut. Rep. 9, 143–164 (2023). https://doi.org/10.1007/s40726-023-00256-9

    Article  CAS  Google Scholar 

  26. D.A. Xie, C.X. Tang, D. Li, J.R. Yuan, F.G. Xu, Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.111085

    Article  Google Scholar 

  27. S. Vadivel, B. Paul, H. Mohan, Optic. Mater. (2023). https://doi.org/10.1016/j.optmat.2023.113894

    Article  Google Scholar 

  28. M. Ahmad, W. Rehman, M.M. Khan, M.T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab, F. Menaa, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2020.104725

    Article  Google Scholar 

  29. P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, M. Naushad, Environ. Chem. Lett. 20, 1047–1081 (2022). https://doi.org/10.1007/s10311-021-01361-1

    Article  CAS  Google Scholar 

  30. K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-Y. Liu, H. Lin, G. Wang, Ceram. Int. 46, 1494–1502 (2020). https://doi.org/10.1016/j.ceramint.2019.09.116

    Article  CAS  Google Scholar 

  31. C. Han, M.-Q. Yang, B. Weng, Y.-J. Xu, Phys. Chem. Chem. Phys. 16, 16891–16903 (2014). https://doi.org/10.1039/c4cp02189d

    Article  CAS  PubMed  Google Scholar 

  32. L. Chen, S.Y. Zuo, Z.Y. Guan, H.M. Xu, D.S. Xia, D.Y. Li, Res. Chem. Intermed. 47, 795–811 (2021). https://doi.org/10.1007/s11164-020-04298-2

    Article  CAS  Google Scholar 

  33. A.N. Ech-Chergui, A.S. Kadari, M.M. Khan, A. Popad, Y. Khane, M. Guezzoul, C. Leostean, D. Silipas, L. Barbu-Tudoran, Z. Abdelhalim, F. Bennabi, K. Driss-Khodja, B. Amrani, Chem. Pap. 77, 1047–1058 (2023). https://doi.org/10.1007/s11696-022-02543-z

    Article  CAS  Google Scholar 

  34. X.-J. Yang, X.-M. Xu, J. Xu, Y.-F. Han, J. Am. Chem. Soc. 135, 16058–16061 (2013). https://doi.org/10.1021/ja409130c

    Article  CAS  PubMed  Google Scholar 

  35. D.Y. Sun, B.Y. Shen, S.G. Yang, X.Y. Cheng, Q. Zhong, S.A. Abbas, Y.H. Dai, Y.Z. Liu, C.M. Xu, C.D. Qi, H. He, S.Y. Li, Sep. Purif. Technol. (2023). https://doi.org/10.1016/j.seppur.2023.124763

    Article  Google Scholar 

  36. S. Pal, S. Maiti, U.N. Maiti, K.K. Chattopadhyay, CrystEngComm 17, 1464–1476 (2015). https://doi.org/10.1039/c4ce02159b

    Article  CAS  Google Scholar 

  37. C. Pan, W.Y. Wang, Y.H. Zhang, J.C. Nam, F. Wu, Z.X. You, J. Xu, J.J. Li, Appl. Catal. B-Environ. (2023). https://doi.org/10.1016/j.apcatb.2023.122659

    Article  Google Scholar 

  38. Y.J. Song, A.M. Wang, S.Y. Ren, Y.Y. Zhang, Z.G. Zhang, Environ. Res. (2023). https://doi.org/10.1016/j.envres.2023.115303

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, R. Xiong, J. Shi, J. Wei, Sci. Rep. (2014). https://doi.org/10.1038/srep07045

    Article  PubMed  PubMed Central  Google Scholar 

  40. M. Sabri, A. Habibi-Yangjeh, H. Chand, V. Krishnan, Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2020.117268

    Article  Google Scholar 

  41. Q. Ni, X. Ke, W. Qian, Z. Yan, J. Luan, W. Liu, Appl. Catal. B-Environ (2024). https://doi.org/10.1016/j.apcatb.2023.123226

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52268042), Natural Science Foundation of Gansu Province, China (22JR5RA253), and Hong Liu First-Class Disciplines Development Program of Lanzhou University of Technology.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Yu Qingsong: investigation, formal analysis, conceptualization, and writing—original draft preparation. Li Zhiming: writing—original draft, methodology, and data curation. Wei Zhiqiang: investigation, supervision, and writing—reviewing and editing. Ding Meijie: validation. Zhang Huining: resources. All authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhiqiang Wei.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Li, Z., Wei, Z. et al. A novel ZnO/FeOCl composite as a photo-Fenton catalyst for degradation tetracycline under visible light. J Mater Sci: Mater Electron 35, 1752 (2024). https://doi.org/10.1007/s10854-024-13497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13497-1

Navigation