Skip to main content
Log in

Experimental and theoretical investigations on the hexagonal structure of Co2O3 nanoparticles synthesized via simple precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The simple precipitation method used to synthesize nanostructured Co2O3 has produced highly crystalline hexagonal-shaped nanoparticles with promising characteristics for microwave and bio-medical applications. Different analytical techniques have been used to investigate these Co2O3 nanoparticles. The formation of a well-defined crystalline structure was observed and confirmed to be hexagonal by X-ray diffraction. The spherical morphology image was confirmed by FE-SEM. The Co2O3 nanoparticles exhibit ferromagnetic ordering at low magnetic field strengths. The nanoparticles that have been prepared can be utilized in magnetic data storage applications. The DFT/B3LYP/LANL2DZ level of theory was employed to determine the theoretical parameters for the metal oxide composite, and enhanced bond parameters were calculated using the same basis set. The compound’s nonlinear optical (NLO) properties have been evaluated through the calculation of first-order hyperpolarizability, and Homo–Lumo analysis has revealed charge transfer processes within the molecule. The Molecular Electrostatic Potential evaluations and Mulliken atomic charges were analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Data will be made available on request.

References

  1. S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018)

    Article  PubMed  CAS  Google Scholar 

  2. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. M. Benelmekki, Nanomaterials: the original product of nanotechnology (Morgan & Claypool Publishers, 2019)

    Book  Google Scholar 

  4. Y. Hou, H. Kondoh, M. Shimojo, T. Kogure, T. Ohta, Highyield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. B 109(41), 19094–19098 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. K.J. Klabunde, R.M. Richards, Nanoscale materials in chemistry (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  6. M. Fernández-García, J.A. Rodriguez, Metal oxide nanoparticles. Encycl. Inorg. Bioinorg. Chem. (2011). https://doi.org/10.1002/9781119951438.eibc0331

    Article  Google Scholar 

  7. P.F. Garcıa, M. Brammen, M. Wolf, S. Reinlein, M.F. Von Roman, S. Berensmeier, High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep. Purif. Technol. 150, 29–36 (2015)

    Article  Google Scholar 

  8. J. Schmidt, M.R. Marques, S. Botti, M.A. Marques, Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5(1), 1–36 (2019)

    Article  Google Scholar 

  9. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137(26), 8356–8359 (2015)

    Article  PubMed  CAS  Google Scholar 

  10. A.M. Cao, J.S. Hu, H.P. Liang, W.G. Song, L.J. Wan, X.L. He, X.G. Gao, S.H. Xia, Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. J. Phys. Chem. B 110(32), 15858–15863 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. J. Chen, X. Wu, A. Selloni, Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys. Rev. B 83(24), 245204 (2011)

    Article  Google Scholar 

  12. J. Morris, J. Willis, EPA Nanotechnology White Paper, EPA 100/B-07/00 (2007). Retrieved from http://www.epa.gov/osa

  13. M. Salavati-Niasari, F. Davar, M. Mazaheri, M. Shaterian, Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition. J. Magn. Magn. Mater. 320(3–4), 575–578 (2008)

    Article  CAS  Google Scholar 

  14. A.S. Zola, R.U. Ribeiro, J.M.C. Bueno, D. Zanchet, P.A. Arroyo, Cobalt nanoparticles prepared by three different methods. J. Exp. Nanosci. 9(4), 398–405 (2012)

    Article  Google Scholar 

  15. M. Mauro, M. Crosera, M. Pelin, C. Florio, F. Bellomo, G. Adami, P. Apostoli, G. De Palma, M. Bovenzi, M. Campanini, F.L. Filon, Cobalt oxide nanoparticles: behaviortowards intact and impaired human skin and keratinocytes toxicity. Int. J. Environ. Res. Public Health 12(7), 8263–8280 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22(9), 267 (2020)

    Article  CAS  Google Scholar 

  17. S.M. Ansari, R.D. Bhor, K.R. Pai, D. Sen, S. Mazumder, K. Ghosh, Y.D. Kolekar, C.V. Ramana, Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414, 171–187 (2017)

    Article  CAS  Google Scholar 

  18. N. Izu, I. Matsubara, T. Uchida, T. Itoh, W. Shin, Synthesis of spherical cobalt oxide nanoparticles by a polyol method. J. Ceram. Soc. Jpn. 125(9), 701–704 (2017)

    Article  CAS  Google Scholar 

  19. S. Farhadi, M. Javanmard, G. Nadri, Characterization of cobalt oxide nanoparticles prepared by the thermal decomposition. Acta Chim. Slov. 63(2), 335–343 (2016)

    Article  PubMed  CAS  Google Scholar 

  20. K. Sun, J. Wang, Y. Yang, Y. Li, Z. Yu, Z. Lan, X. Jiang, R. Guo, C. Wu, Influence of Ta2O5–Co2O3 co-doping on the magnetic property of NiMgCuZn ferrites. Physica B 476, 122–128 (2015)

    Article  CAS  Google Scholar 

  21. K.P. Latha, C. Prema, S.M. Sundar, Synthesis and characterization of cobalt oxide nanoparticles. J. Nanosci. Technol. 4(5), 475–477 (2018)

    Article  Google Scholar 

  22. S.K. Abdel-Aal, A.S. Abdel-Rahman, Fascinating physical properties of 2D hybrid perovskite [(NH3)(CH2)7(NH3)] CuCl x Br 4–x, x= 0, 2 and 4. J. Electron. Mater. 48, 1686–1693 (2019)

    Article  CAS  Google Scholar 

  23. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision C.02 (Gaussian Inc., Wallingford CT, 2010)

  24. A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96(3), 2155–2160 (1992)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    Article  CAS  Google Scholar 

  26. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  CAS  Google Scholar 

  27. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J. Am. Chem. Soc. 116(5), 2094–2102 (1994)

    Article  CAS  Google Scholar 

  28. M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure—property relation in NLO responses of fractal antenna dendrimers. J. Am. Chem. Soc. 124(32), 9648–9655 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. V.M. Geskin, C. Lambert, J.L. Brédas, Origin of high secondand third-order nonlinear optical response in ammonio/borate diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J. Am. Chem. Soc. 125(50), 15651–15658 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to infrared to and raman spectroscopy (Academic Press, New York, 1990)

    Google Scholar 

  31. I. Fleming, Frontier orbitals and organic chemical reactions (Wiley, New York, 1976)

    Google Scholar 

  32. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839–845 (2008)

    Article  PubMed  Google Scholar 

  33. F.J. Luque, J.M. Lopez, M. Orozco, Perspective on “electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects.” Theoret. Chem. Acc. 103(3–4), 343–345 (2000)

    CAS  Google Scholar 

  34. N. Okulik, A.H. Jubert, Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Des. 4(1), 17–30 (2005)

    CAS  Google Scholar 

  35. S. Savithiri, S. Bharanidharan, G. Rajarajan, P. Sugumar, Mol. Phys. 120(24), e2144520 (2022). https://doi.org/10.1080/00268976.2022.2144520

    Article  CAS  Google Scholar 

  36. S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand, S. Srinivasan, J. Chem. Sci. 120, 315–324 (2008). https://doi.org/10.1007/s12039-008-0054-8

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public,commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

C. Rajeevgandhi: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrotethe paper. L. Guganathan: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data. S. Bharanidharan: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data, Computational study. S. Savithiri: Conceived and designed the experiments; analysis tools or data, Computational study. K. Mohan: Analyzed and interpreted the data. All authors have read and review the manuscript.

Corresponding author

Correspondence to C. Rajeevgandhi.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeevgandhi, C., Guganathan, L., Bharanidharan, S. et al. Experimental and theoretical investigations on the hexagonal structure of Co2O3 nanoparticles synthesized via simple precipitation method. J Mater Sci: Mater Electron 35, 1748 (2024). https://doi.org/10.1007/s10854-024-13494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13494-4

Navigation