Skip to main content
Log in

Co-electrodeposited Ag2SnS3/Mo thin films: optical and electrochemical study: DFT complement

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study concerns the synthesis of the Ag2SnS3 phase on a molybdenum (Mo) substrate, using the coelectrodeposition-sulfurization process by adjusting the [Ag+] at 0.01 M. XRD, Raman, UV–visible and electrochemical analyses have shown that Ag2SnS3/Mo films have been well elaborated with remarkable properties for practical applications. Optically, when [Ag+] was varied between 0.01 and 0.02 M, Ag2SnS3 films present a bandgap change in the range 1.20–1.36 eV, with an absorption coefficient of around 10–4 cm−1. Whereas the DFT → GGA calculation was implemented as a confirmatory theoretical study of the semiconductor and optical aspects of this Ag2SnS3 compound whilst comparing results with experiment. A further attractive property was demonstrated here by an electrochemical study of Ag2SnS3/Mo in Na2SO4 (1 M) under the (− 900, 100) mV/SCE potential window. More specifically, cyclic-voltammetry analysis has highlighted its pseudo-capacitor character with a developed specific capacitance of 800 F g−1, while galvanostatic charge–discharge shows a drop of around 35% when the current is reduced from 0.5 to 3 mA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.M. Alqahtani et al., Effect of metal ion substitution on electrochemical properties of cobalt oxide. J. Alloys Compd. 771, 951–959 (2019). https://doi.org/10.1016/j.jallcom.2018.09.014

    Article  CAS  Google Scholar 

  2. M. Oubakalla et al., The Ag3SbS3 thin film combining super-capacitive and absorptive behaviors: elaboration, characterization and DFT study. Appl. Phys. A Mater. Sci. Process. Phys A Mater Sci Process (2024). https://doi.org/10.1007/s00339-023-07183-y

    Article  Google Scholar 

  3. S. Jeon, J.H. Jeong, H. Yoo, H.K. Yu, B.H. Kim, M.H. Kim, RuO2 nanorods on electrospun carbon nanofibers for supercapacitors. ACS Appl Nano Mater 3(4), 3847–3858 (2020). https://doi.org/10.1021/acsanm.0c00579

    Article  CAS  Google Scholar 

  4. M.A. Dar, D. Govindarajan, G.N. Dar, Facile synthesis of SnS nanostructures with different morphologies for supercapacitor and dye-sensitized solar cell applications. J. Mater. Sci. Mater. Electron. 32(15), 20394–20409 (2021). https://doi.org/10.1007/s10854-021-06550-w

    Article  CAS  Google Scholar 

  5. I. Hussain et al., Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J Energy Storage 36, 102408 (2021). https://doi.org/10.1016/j.est.2021.102408

    Article  Google Scholar 

  6. B.J. Rani et al., Ag doped ZnSnO3 nanocubes: promotion on the charge storage mechanism for supercapacitors. J. Phys. Chem. SolidsChem Solids 169, 110894 (2022). https://doi.org/10.1016/j.jpcs.2022.110894

    Article  CAS  Google Scholar 

  7. A.C. Lokhande et al., Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors. Electrochim. Acta 284, 80–88 (2018). https://doi.org/10.1016/j.electacta.2018.07.170

    Article  CAS  Google Scholar 

  8. S.F. Ho, Y.C. Yang, H.Y. Tuan, Silver boosts ultra-long cycle life for metal sulfide lithium-ion battery anodes: Taking AgSbS2 nanowires as an example. J. Colloid Interface Sci. 621, 416–430 (2022). https://doi.org/10.1016/j.jcis.2022.04.020

    Article  PubMed  CAS  Google Scholar 

  9. M. Jayachandran, A. Rose, T. Maiyalagan, N. Poongodi, T. Vijayakumar, Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta Acta 366, 137412 (2021). https://doi.org/10.1016/j.electacta.2020.137412

    Article  CAS  Google Scholar 

  10. K. Ramasamy, R.K. Gupta, S. Palchoudhury, S. Ivanov, A. Gupta, Layer-structured copper antimony chalcogenides (CuSbSexS2-x): Stable electrode materials for supercapacitors. Chem. Mater. 27(1), 379–386 (2015). https://doi.org/10.1021/cm5041166

    Article  CAS  Google Scholar 

  11. M. Nakashima et al., Fabrication of (Cu, Ag)2SnS3 thin films by sulfurization for solar cells. Thin Solid Films 642, 8–13 (2017). https://doi.org/10.1016/j.tsf.2017.09.010

    Article  CAS  Google Scholar 

  12. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, N.K. Allam, Effect of complexing agents on the electrodeposition of Cu-Zn-Sn metal precursors and corresponding Cu3ZnSnS4-based solar cells. J. Electroanal. Chem. 735, 129–135 (2014). https://doi.org/10.1016/j.jelechem.2014.10.021

    Article  CAS  Google Scholar 

  13. M. Oubakalla et al., Potential effect on the properties of Cu3BiS3 thin film co-electrodeposited in aqueous solution enriched using DFT calculation. J. Electron. Mater. 51(12), 7223–7233 (2022). https://doi.org/10.1007/s11664-022-09964-2

    Article  CAS  Google Scholar 

  14. M. Oubakalla et al., Development of a new electrodeposited AgSbS2/FTO electrode: comparison of supercapacitance in Li-based aqueous and organic electrolytes. Mater. Chem. Phys.Chem Phys 314, 128867 (2024). https://doi.org/10.1016/j.matchemphys.2023.128867

    Article  CAS  Google Scholar 

  15. K. Fareh et al., Effect of deposition time on the physicochemical properties of co-electrodeposited Cu2SnS3 thin films for photovoltaic applications. Physica B Condens Matter 685, 416058 (2024). https://doi.org/10.1016/j.physb.2024.416058

    Article  CAS  Google Scholar 

  16. M. Beraich et al., Synthesis and characterization of Cu2CoSnS4 thin film via electrodeposition technique for solar cells. J. Mater. Sci. Mater. Electron. 30(13), 12487–12492 (2019). https://doi.org/10.1007/s10854-019-01608-2

    Article  CAS  Google Scholar 

  17. M. Oubakalla et al., Effects of co-electrodeposition potential on the physicochemical properties of Cu2CoSnS4 thin films enriched by a theoretical calculation. Optik 258, 168886 (2022). https://doi.org/10.1016/j.ijleo.2022.168886

    Article  CAS  Google Scholar 

  18. P. Sebastián, E. Vallés, E. Gómez, First stages of silver electrodeposition in a deep eutectic solvent: comparative behavior in aqueous medium. Electrochim. Acta 112, 149–158 (2013). https://doi.org/10.1016/j.electacta.2013.08.144

    Article  CAS  Google Scholar 

  19. A. Nagaoka, K. Yoshino, K. Kakimoto, K. Nishioka, Phase diagram of the Ag2SnS3–ZnS pseudobinary system for Ag2ZnSnS4 crystal growth. J. Cryst. GrowthCryst Growth 555, 125967 (2021). https://doi.org/10.1016/j.jcrysgro.2020.125967

    Article  CAS  Google Scholar 

  20. A. Kanai, T. Tosuke, H. Araki, M. Sugiyama, Effects of Ag on the carrier lifetime and efficiency of (Cu1-xAgx)2SnS3 solar cells. Jpn. J. Appl. Phys. J Appl Phys 60(3), 035508 (2021). https://doi.org/10.35848/1347-4065/abe60b

    Article  CAS  Google Scholar 

  21. V. Dzhagan et al., Raman and x-ray photoelectron spectroscopic study of aqueous thiol-capped Ag-Zn-Sn-S nanocrystals. Materials 14(13), 3593 (2021). https://doi.org/10.3390/ma14133593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. S.S. Özel, S. Akay, F. Özel, A facile synthesis of Ag2MnSnS4 nanorods through colloidal method. Turk. J. Chem. 46(4), 1291–1296 (2022). https://doi.org/10.55730/1300-0527.3435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. K.W. Cheng, W.T. Tsai, Y.H. Wu, Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells. J. Power. Sources 317, 81–92 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.086

    Article  CAS  Google Scholar 

  24. A. Toghan, M. Khairy, E.M. Kamar, M.A. Mousa, Effect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor application. J. Market. Res. 19, 3521–3535 (2022). https://doi.org/10.1016/j.jmrt.2022.06.095

    Article  CAS  Google Scholar 

  25. Y. Akaki, H. Akita, S. Nakamura, H. Araki, S. Seto, T. Yamaguchi, Effects of H2S annealing for Ag/Sn and Ag/SnS thin films deposited by a thermal evaporation method. Phys. Status Solidi C (2017). https://doi.org/10.1002/pssc.201600254

    Article  Google Scholar 

  26. A. Chihi, M.F. Boujmil, B. Bessais, Synthesis and characterization of photoactive material Cu2NiSnS4 thin films. J. Mater. Sci. Mater. Electron. 30(4), 3338–3348 (2019). https://doi.org/10.1007/s10854-018-00607-z

    Article  CAS  Google Scholar 

  27. P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, Chemical synthesis of Fe2O3 thin films for supercapacitor application. J. Alloys Compd. 509(5), 2567–2571 (2011). https://doi.org/10.1016/j.jallcom.2010.11.091

    Article  CAS  Google Scholar 

  28. A. Murugan, V. Siva, A. samad Shameem, S.A. Bahadur, Optimization of adsorption and reaction time of SILAR deposited Cu2ZnSnS4 thin films: structural, optical and electrochemical performance. J. Alloys Compd.Compd 856, 158055 (2021). https://doi.org/10.1016/j.jallcom.2020.158055

    Article  CAS  Google Scholar 

  29. K. Mahankali, N. Kumar Thangavel, Y. Ding, S.K. Putatunda, L. Mohana, R. Arava, Interfacial behavior of water-in-salt electrolytes at porous electrodes and its effect on supercapacitor performance. Electrochim. Acta. Acta (2019). https://doi.org/10.1016/j.electacta.2019.134989

    Article  Google Scholar 

  30. A. Murugan, V. Siva, A. samad Shameem, S.A. Bahadur, Effect of Zn on nanoscale quaternary Cu2ZnSnS4 thin film electrodes for high performance supercapacitors. J Energy Storage 44, 103423 (2021). https://doi.org/10.1016/j.est.2021.103423

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

M. Oubakalla: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Writing—original draft, Writing—review & editing. A. El-Habib: Writing—original draft, Data curation, Formal analysis, Software, Investigation, Validation. M. Beraich: Methodology, Resources, Supervision, Validation, Writing—review & editing. M. El Bouji: Methodology, Resources, Supervision, Validation, Writing—review & editing. Y. Nejmi: Methodology, Resources, Supervision, Validation, Writing—review & editing. M. Ebn Touhami: Funding acquisition, Methodology, Resources, Supervision, Validation, Writing—review & editing. M. Taibi: Methodology, Resources, Supervision, Validation, Writing—review & editing. A. Zarrouk: Funding acquisition, Project administration, Resources, Supervision, Validation, Writing—review & editing. M. Fahoume: Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing—review & editing.

Corresponding author

Correspondence to M. Oubakalla.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oubakalla, M., El-Habib, A., Beraich, M. et al. Co-electrodeposited Ag2SnS3/Mo thin films: optical and electrochemical study: DFT complement. J Mater Sci: Mater Electron 35, 1729 (2024). https://doi.org/10.1007/s10854-024-13487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13487-3

Navigation