Skip to main content
Log in

The impact of surface treatment on Al foil for Cu2ZnSnS4 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using Al foil as the substrate for Cu2ZnSnS4 (CZTS) easily leads to oxidation, forming a high-resistance Al2O3 film that increases structural resistance. Herein, a plasma cleaning technology was developed for the surface treatment of Al foil. As the plasma cleaning voltage and time increased, the activation energy of A on Al foil decreased, enabling aluminum doping. The SEM images showed a decrease in porosity and an increase in grain size, while the XRD patterns revealed enhanced crystallinity, resulting in reduced resistance. Under the condition of 600 V for 2 h, the Al atomic ratio increased to 3.67%, the film thickness reached 2.7 μm, the average grain size was 1.06 μm, and the interface resistance was only 3.3 Ω. Additionally, the surface of the CZTS film deposited on aluminum foil was smooth, uniform, and compact. These results confirmed the feasibility of doping and surface treatment of Al foil using plasma cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. S. Chander, S.K. Tripathi, I. Kaur, A.K. De, Mater. Today Sustain. (2024). https://doi.org/10.1016/j.mtsust.2023.100662

    Article  Google Scholar 

  2. M. Lahoual, M. Bourennane, L. Aidaoui, Physica Status Solidi (a). (2024) https://doi.org/10.1002/pssa.202300732

  3. N. Ezukwoke, O.U. Oparaku, B.B. Uzoejinwa, F.I. Ezema, M.O. Ezea, S.C. Omeje, V.C. Chijindu, J. Indian Chem. Soc. (2023). https://doi.org/10.1016/j.jics.2022.100857

    Article  Google Scholar 

  4. R.J. Deokate, H.S. Chavan, H. Im, A.I. Inamdar, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2021.09.160

    Article  Google Scholar 

  5. H.S. Nugroho, G. Refantero, N.L.W. Septiani, M. Iqbal, S. Marno, H. Abdullah, E.C. Prima, B. Nugraha, Yuliarto, J. Ind. Eng. Chem. (2022). https://doi.org/10.1016/j.jiec.2021.09.010

    Article  Google Scholar 

  6. U.A. Shah, A. Wang, M. Irfan Ullah, M. Ishaq, I.A. Shah, Y. Zeng, M.S. Abbasi, M.A. Umair, U. Farooq, G.-X. Liang, K. Sun, Small. (2024) https://doi.org/10.1002/smll.202310584

  7. J. Zhang, C. Li, M. Zhu, J. Qiu, Y. Yang, L. Li, S. Tang, Z. Li, Z. Mao, Z. Cheng, S. Xiang, X. Zhang, Z. Zhang, Nano Energy. (2023). https://doi.org/10.1016/j.nanoen.2023.108217

    Article  Google Scholar 

  8. W. Lei, Y. Yu, H. Zhang, Q. Jia, S. Zhang, Mater. Today. (2022). https://doi.org/10.1016/j.mattod.2021.10.028

    Article  Google Scholar 

  9. N. Akcay, V. Gremenok, V.A. Ivanov, E. Zaretskaya, S. Ozcelik, Sol Energy. (2022). https://doi.org/10.1016/j.solener.2022.01.074

    Article  Google Scholar 

  10. S.T. Yussuf, K.V. Mokwebo, K.C. Januarie, M. Oranzie, E.I. Iwuoha, Mater. Today Chem. (2023). https://doi.org/10.1016/j.mtchem.2023.101623

    Article  Google Scholar 

  11. A. Wang, M. He, M.A. Green, K. Sun, X. Hao, Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203046

    Article  Google Scholar 

  12. T.U. Rahman, H. Roy, A. Fariha, A.Z. Shoronika, M.R. Al-Mamun, S.Z. Islam, M.S. Islam, H.M. Marwani, A. Islam, A.K.D. Alsukaibi, M.M. Rahman, M.R. Awual, Sep. Purif. Technol. (2023). https://doi.org/10.1016/j.seppur.2023.124141

    Article  Google Scholar 

  13. C. Ma, A. Nikiforov, N. De Geyter, R. Morent, K. Ostrikov, Curr. Opin. Chem. Eng. (2022). https://doi.org/10.1016/j.coche.2021.100764

    Article  Google Scholar 

  14. Z. Wang, J. Chen, S. Sun, Z. Huang, X. Zhang, X. Li, H. Dong, Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2022.05.018

    Article  Google Scholar 

  15. C.-H. Lin, L. Hu, X. Guan, J. Kim, C.-Y. Huang, J.-K. Huang, S. Singh, T. Wu, Adv. Mater. (2022). https://doi.org/10.1002/adma.202108616

    Article  PubMed  PubMed Central  Google Scholar 

  16. Z. Hu, Y. Zhao, W. Zou, Q. Lu, J. Liao, F. Li, M. Shang, L. Lin, Z. Liu, Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202203179

    Article  PubMed  PubMed Central  Google Scholar 

  17. N. Kiomarsipour, A. Eshaghi, M. Ramazani, H. Zabolian, M. Abbasi-Firouzjah, Arab. J. Chem. (2023). https://doi.org/10.1016/j.arabjc.2023.104667

    Article  Google Scholar 

  18. P.V. Menezes, M.M. Elnagar, M. Al-Shakran, M.J. Eckl, P.W. Menezes, L.A. Kibler, T. Jacob, Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202107058

    Article  Google Scholar 

  19. M. Hu, L. Xu, X. Zhang, Z. Song, S. Luo, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154621

    Article  Google Scholar 

  20. B.C. Bussell, P.N. Gibson, J. Lawton, P. Couture, M.K. Sharpe, J. England, S.J. Hinder, V. Stolojan, S.A. Thornley, M.A. Baker, Surf. Coat. Technol. (2022). https://doi.org/10.1016/j.surfcoat.2022.128402

    Article  Google Scholar 

  21. W. Fu, Y. He, K. Huang, X. He, G. Dai, J. Li, X. Mei, P. Jin, Y. Yang, W. Cai, Thin Solid Films. (2023). https://doi.org/10.1016/j.tsf.2023.139922

    Article  Google Scholar 

  22. M.G.C. Beh, B. Hartiti, A. Ziti, F.K. Konan, A. Batan, H. Labrim, A. Laazizi, C.T. Haba, P. Thevenin, Mater. Today: Proc. (2024) https://doi.org/10.1016/j.matpr.2024.03.029

  23. R. Sharma, S.L. Himanshu, M.D. Patel, M.S. Kannan, Dhaka, Surf. Interfaces. (2022). https://doi.org/10.1016/j.surfin.2022.102204

    Article  Google Scholar 

  24. M. Kamalian, E. Hasani, L. Babazadeh Habashi, M.G. Arashti, Phys. B (2024). https://doi.org/10.1016/j.physb.2023.415524

    Article  Google Scholar 

  25. D.S. Tsvetkov, V.V. Sereda, D.A. Malyshkin, I.L. Ivanov, A.Y. Zuev, J. Mater. Chem. A (2022). https://doi.org/10.1039/D1TA08407K

    Article  Google Scholar 

  26. A.K. Sen Gupta, S.F.U. Farhad, M.S. Habib, M.R. Hossan, K. Hossain, N.K. Das, M. Quamruzzaman, M.A. Matin, N. Amin, Appl. Surf. Sci. Adv. (2023). https://doi.org/10.1016/j.apsadv.2022.100352

    Article  Google Scholar 

  27. S.P. Keerthana, R. Yuvakkumar, G. Ravi, J. Bastina Celcia, S. Arun Metha, D. Velauthapillai, Sustainable Energy Technol. Assess. (2024). https://doi.org/10.1016/j.seta.2024.103778

    Article  Google Scholar 

  28. M.A. Olgar, S. Erkan, R. Zan, J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.171283

    Article  Google Scholar 

  29. A. Güngör, S.G. Çolak, M.Ö. Alaş Çolak, R. Genç, E. Erdem, Electrochim. Acta. (2024). https://doi.org/10.1016/j.electacta.2024.143924

    Article  Google Scholar 

  30. Y. Li, H. Wei, C. Cui, X. Wang, Z. Shao, S. Pang, G. Cui, J. Mater. Chem. A (2023). https://doi.org/10.1039/D2TA09561K

    Article  Google Scholar 

  31. S. Mazumder, K. Senthilkumar, Sol Energy. (2022). https://doi.org/10.1016/j.solener.2022.03.036

    Article  Google Scholar 

  32. M. Xia, Z. Song, H. Wu, X. Du, X. He, J. Pang, H. Luo, L. Jin, G. Li, G. Niu, J. Tang, Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202110729

    Article  PubMed  PubMed Central  Google Scholar 

  33. Z. Gao, C. Leng, H. Zhao, X. Wei, H. Shi, Z. Xiao, Adv. Mater. (2024). https://doi.org/10.1002/adma.202304855

    Article  PubMed  Google Scholar 

  34. J. Lin, J. Xu, Y. Yang, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.08.253

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Number: 22179024, 21805046), and the Open Fund of the Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials (Grant Number: AESM202111).

Author information

Authors and Affiliations

Authors

Contributions

Guoxiang Chen, Weihai Fu, and Weitong Cai designed the survey; Guoxiang Chen, Yanxue Wu, Beibei Jiang, Chao Huang, and Weihai Fu conducted the measurements and processed experimental data; Guoxiang Chen wrote most of the initial version of the text; Yuanzheng Yang was in charge Supervise and lead the planning and execution of research activities, including external mentoring of the core team. All authors contributed to the study strategy, discussion and interpretation of the results, and the final form of the text and figures. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Weitong Cai.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

The paper accurately represents the authors' investigation and evaluation without any misrepresentation or omission of facts. It is an honest and thorough depiction of their research work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Fu, W., Huang, C. et al. The impact of surface treatment on Al foil for Cu2ZnSnS4 thin films. J Mater Sci: Mater Electron 35, 1735 (2024). https://doi.org/10.1007/s10854-024-13486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13486-4

Navigation