Skip to main content
Log in

Effect of heat treatment on performance of high-temperature thermistor LaCrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, pure LaCrO3 ceramic as the negative temperature coefficient (NTC) thermistors were investigated. NTC LaCrO3 powder with an average particle size of 80 nm was prepared using the sol–gel method, and LaCrO3 ceramic samples with a relative density spanning from 92.8 to 95.6% were prepared using spark plasma sintering (SPS) at 1450, 1500, and 1600 °C. The LaCrO3 samples were then heat-treated at 1300 °C in an air atmosphere for 2 h. Before heat treatment, the values of room temperature resistivity were between 1.34 × 109 and 2.59 × 109 Ω·cm; material constant between 4418 and 4575 K; and activation energy between 0.6099 and 0.6316 eV. After heat treatment, the resistivity was from 2.19 × 105 to 1.54 × 106 Ω·cm, material constant from 2539 to 2808 K, and activation energy from 0.3505 to 0.3876 eV. This combination of properties renders pure LaCrO3 materials an excellent candidate system for application as NTC thermistors in the high-temperature range of 200–800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Chen, J. Wang, J. Yao, A. Chang, B. Wang, Pd/Ag thin film deposited on negative temperature coefficient (NTC) ceramics by direct current magnetron sputtering. Vacuum 167, 227–233 (2019). https://doi.org/10.1016/j.vacuum.2019.06.005

    Article  CAS  Google Scholar 

  2. M.-M. Cui, X. Zhang, K.-G. Liu, H.-B. Li, M.-M. Gao, S. Liang, Fabrication of nano-grained negative temperature coefficient thermistors with high electrical stability. Rare Met. 40(4), 1014–1019 (2019). https://doi.org/10.1007/s12598-019-01294-3

    Article  CAS  Google Scholar 

  3. F. Guan, Z. Dang, X. Chen, S. Huang, J. Wang, X. Cheng, Y. Wu, Novel electrical properties of Mn-doped LaCrO3 ceramics as NTC thermistors. J. Alloys Compd. 871, 159269 (2021). https://doi.org/10.1016/j.jallcom.2021.159269

    Article  CAS  Google Scholar 

  4. S. Liang, D. Zhao, M. Cui, H. Li, X. Zhang, Two-step sintering of submicro-grain Ni0.54Mn1.26Fe1.2O4 NTC ceramics with an excellent electrical performance. J. Mater. Sci. Mater. Electron. 30(22), 20144–20153 (2019). https://doi.org/10.1007/s10854-019-02388-5

    Article  CAS  Google Scholar 

  5. T. Liu, H. Zhang, P. Ma, A. Chang, H. Jiang, Core–shell NTC materials with low thermal constant and high resistivity for wide temperature thermistor ceramics. J. Am. Ceram. Soc. 102(8), 4393–4398 (2019). https://doi.org/10.1111/jace.16418

    Article  CAS  Google Scholar 

  6. B. Wang, J. Wang, A. Chang, J. Yao, Bismuth trioxide-tailored sintering temperature, microstructure and NTCR characteristics of Mn1.1Co1.5Fe0.4O4 ceramics. RSC Adv. 9(44), 25488–25495 (2019). https://doi.org/10.1039/c9ra04676c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. X. Zhang, S. Yao, D. Zhao, S. Liang, Nano-negative temperature coefficient thermistor with unique electrical properties of high B constant and low resistivity. J. Mater. Sci. Mater. Electron. 32(4), 5222–5232 (2021). https://doi.org/10.1007/s10854-021-05254-5

    Article  CAS  Google Scholar 

  8. W. Yan, H. Zhang, X. Wang, C. You, Z. Li, Characterization of electrical conductivity and temperature sensitivity of Cr/Sb-modified SnO2 ceramics. J. Mater. Sci. Mater. Electron. 31(5), 4040–4049 (2020). https://doi.org/10.1007/s10854-020-02951-5

    Article  CAS  Google Scholar 

  9. G. Jiang, Z. Li, C. You, W. Hao, Z. Ma, H. Zhang, Temperature sensitivity and electrical stability of Sb/Mn co-doped SnO2 ceramics. J. Mater. Sci. Mater. Electron. 32(12), 16945–16955 (2021). https://doi.org/10.1007/s10854-021-06258-x

    Article  CAS  Google Scholar 

  10. M. Chen, H. Zhang, T. Liu, H. Jiang, A. Chang, Preparation, structure and electrical properties of La1−xBaxCrO3 NTC ceramics. J. Mater. Sci. Mater. Electron. 28(24), 18873–18878 (2017). https://doi.org/10.1007/s10854-017-7839-9

    Article  CAS  Google Scholar 

  11. Q. Ma, Q. Zhao, X. Jia, D. He, A. Chang, Preparation and characterization for LaMnO3 and 0.3LaMnO3–0.7Y2O3 high temperature bilayer structure NTC thermistors. J. Mater. Sci. Mater. Electron. 30(12), 11005–11010 (2019). https://doi.org/10.1007/s10854-019-01441-7

    Article  CAS  Google Scholar 

  12. J. Yang, H. Zhang, X. Sang, A. Chang, Z. Su, Study on ion migration characteristics and aging stability of MgTiO3 and LaTiO3 composites ceramic for high temperature negative temperature coefficient ceramics. J. Mater. Sci. Mater. Electron. 31(9), 7067–7075 (2020). https://doi.org/10.1007/s10854-020-03276-z

    Article  CAS  Google Scholar 

  13. Y. Wang, B. Gao, Q. Wang, X. Li, Z. Su, A. Chang, A2Zr2O7 (A = Nd, Sm, Gd, Yb) zirconate ceramics with pyrochlore-type structure for high-temperature negative temperature coefficient thermistor. J. Mater. Sci. 55(32), 15405–15414 (2020). https://doi.org/10.1007/s10853-020-05104-5

    Article  CAS  Google Scholar 

  14. C. Franchini, M. Reticcioli, M. Setvin, U. Diebold, Polarons in materials. Nat. Rev. Mater. 6(7), 560–586 (2021). https://doi.org/10.1038/s41578-021-00289-w

    Article  CAS  Google Scholar 

  15. N. Murali, S.J. Margarette, V. Kondala Rao, V. Veeraiah, Structural, impedance, dielectric and modulus analysis of LiNi1xy0.02Mg0.02CoxZnyO2 cathode materials for lithium-ion batteries. J. Sci. Adv. Mater. Dev. 2(2), 233–244 (2017). https://doi.org/10.1016/j.jsamd.2017.04.004

    Article  Google Scholar 

  16. C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 97(2–3), 425–430 (2006). https://doi.org/10.1007/s10853-005-2620-5

    Article  CAS  Google Scholar 

  17. J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990). https://doi.org/10.1002/adma.19900020304

    Article  CAS  Google Scholar 

  18. S.K. Barik, R.N.P. Choudhary, A.K. Singh, Ac impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv. Mater. Lett. 2(6), 419–424 (2011). https://doi.org/10.5185/amlett.2011.2228

    Article  CAS  Google Scholar 

  19. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017). https://doi.org/10.1016/j.materresbull.2017.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 52372112, 52104358, U22A20147), and Key Research and Development Program of Ningxia (No. 2023BDE03008).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Xiao Zhang, Sen Liang; Carriying the experiments: Jianyun Hu, Siyi Li, Yun Chen, Wei Chu; Formal analysis and investigation:Pinyi Wang, Guangcan Yang; Writing—original draft preparation: Yun Chen, Jianyun Hu; Writing—review and editing: Xiao Zhang, Yun Chen; Funding acquisition: Xiao Zhang, Sen Liang.All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sen Liang.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All authors have actively contributed to and approved the manuscript. We hereby submit it for publication as an “article” exclusively to your esteemed journal. This paper has not been submitted elsewhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, J., Li, S. et al. Effect of heat treatment on performance of high-temperature thermistor LaCrO3. J Mater Sci: Mater Electron 35, 1726 (2024). https://doi.org/10.1007/s10854-024-13476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13476-6

Navigation