Skip to main content
Log in

Enhanced superconducting properties in bulk MgB2 through spark plasma sintering of ball-milled and sieved crystalline boron

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, in situ bulk MgB2 superconducting samples were sintered using spark plasma sintering (SPS) and characterized through various techniques, including X-ray diffraction (XRD), microstructure evaluation, and magnetization measurements. XRD analysis confirmed that MgB2 was the primary phase, with a secondary phase of MgO present in the sintered samples. Scanning electron microscopy (SEM) analysis revealed minimal porosity, and the bulk densities reached 95% of the theoretical value for MgB2, as calculated by mass volume. The samples exhibited remarkably high critical current densities (Jc), up to 405 kA/cm2 in self-field at 10 K, representing a 67% improvement over solid-state sintering. These high Jc values are attributed to the enhanced density of the bulk, which increases the superconducting area, which underscores the importance of density enhancement achieved through SPS and the MgB2 nanograins obtained via ball milling, and sieving of crystalline boron played a crucial role in this improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available, due to the reasons of ethics and ownership, but are available from the corresponding author on reasonable request.

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. M. Eisterer, M. Zehetmayer, H.W. Weber, Current percolation and anisotropy in polycrystalline MgB2. Phys. Rev. Lett. 90(24), 247002 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. P. Mikheenko, E. Martinez, A. Bevan, J. Abell, J. MacManus-Driscoll, Grain boundaries and pinning in bulk MgB2. Supercond. Sci. Technol. 20(9), S264–S270 (2007)

    Article  CAS  Google Scholar 

  4. S. Foltyn, L. Civale, J. MacManus-Driscoll, Q. Jia, B. Maiorov, H. Wang, M. Maley, Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6(9), 631–642 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. M. Muralidhar, M. Shadab, A.S. Srikanth, M. Jirsa, N. Jacques, Review on high-performance bulk MgB2 superconductors. J. Phys. D Appl. Phys. 57(5), 053001–053027 (2023)

    Article  Google Scholar 

  6. V. Russell, R. Hirst, F. Kanda, A. King, An X-ray study of the magnesium borides. Acta Crystallogr. 6(11–12), 870–870 (1953)

    Article  CAS  Google Scholar 

  7. M. Miryala, Advancing sustainability: magnesium-based solutions for environmental challenges and high-performance technologies in superconductivity. J. Magnes. Alloy. 12, 1257–1259 (2024)

    Article  CAS  Google Scholar 

  8. A.V. Pan, S. Zhou, H. Liu, S. Dou, Properties of superconducting MgB2 wires: in situ versus ex situ reaction technique. Supercond. Sci. Technol. 16(5), 639–644 (2003)

    Article  CAS  Google Scholar 

  9. M. Muralidhar, K. Inoue, M. Koblischka, M. Tomita, M. Murakami, Optimization of processing conditions towards high trapped fields in MgB2 bulks. J. Alloys Compd. 608, 102–109 (2014)

    Article  CAS  Google Scholar 

  10. W.K. Yeoh, J. Horvat, J.H. Kim, X. Xu, S.X. Dou, Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB2. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2715026

    Article  Google Scholar 

  11. Y. Bugoslavsky, L. Cohen, G. Perkins, M. Polichetti, T. Tate, R. Gwilliam, A. Caplin, Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation. Nature 411(6837), 561–563 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. S. Dou, W. Yeoh, J. Horvat, M. Ionescu, Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 83(24), 4996–4998 (2003)

    Article  CAS  Google Scholar 

  13. E. Taylan Koparan, S.B. Güner, C. Aksoy, B. Savaşkan, The effect of nano-Pt/nano-SiC co-additions on superconducting properties of bulk MgB2. J. Mater. Sci. Mater. Electron. 34(18), 1424 (2023)

    Article  CAS  Google Scholar 

  14. G. Simon, M. Miryala, Impact of doping on MgB2 superconductors: a comprehensive review. J. Alloys Compd. Commun. (2024). https://doi.org/10.1016/j.jacomc.2024.100023

    Article  Google Scholar 

  15. A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex situ tapes. J. Appl. Phys. (2008). https://doi.org/10.1063/1.3021468

    Article  Google Scholar 

  16. M. Shadab, M. Miryala, Tuning grain boundaries in MgB2 through boron ultra-sonication in 1-heptanol. Ceram. Int. 50(13), 22266–22277 (2024)

    Article  CAS  Google Scholar 

  17. B. Lorenz, C. Chu, High pressure effects on superconductivity, in Frontiers in superconducting materials. (Springer, New York, 2005), pp.459–497

    Chapter  Google Scholar 

  18. G. Giunchi, G. Ripamonti, T. Cavallin, E. Bassani, The reactive liquid Mg infiltration process to produce large superconducting bulk MgB2 manufacts. Cryogenics 46(2–3), 237–242 (2006)

    Article  CAS  Google Scholar 

  19. S. Sprio, D. Rinaldi, G. Celotti, E. Pialorsi, A. Tampieri, Structure and superconducting properties of pure and variously doped bulk MgB2 obtained by uniaxial and isostatic hot pressing. J. Mater. Sci. Mater. Electron. 19, 1012–1022 (2008)

    Article  CAS  Google Scholar 

  20. S.Y. Lee, S.I. Yoo, Y.W. Kim, N.M. Hwang, D.Y. Kim, Preparation of dense MgB2 bulk superconductors by spark plasma sintering. J. Am. Ceram. Soc. 86(10), 1800–1802 (2003)

    Article  CAS  Google Scholar 

  21. J. Noudem, P. Bernstein, L. Dupont, F. Martin, G. Sotelo, D. Dias, R. De Andrade, M. Muralidhar, M. Murakami, Spark plasma sintering of bulk MgB2 and levitation force measurements. Supercond. Sci. Technol. 33(2), 024001 (2020)

    Article  CAS  Google Scholar 

  22. Y. Xing, P. Bernstein, M. Miryala, J.G. Noudem, High critical current density of nanostructured MgB2 bulk superconductor densified by spark plasma sintering. Nanomaterials 12(15), 2583 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Miryala, S.S. Arvapalli, N. Sakai, M. Murakami, H. Mochizuki, T. Naito, H. Fujshiro, M. Jirsa, A. Murakami, J. Noudem, Complex pulse magnetization process and mechanical properties of spark plasma sintered bulk MgB2. Mater. Sci. Eng. B 273, 115390 (2021)

    Article  CAS  Google Scholar 

  24. M. Shadab, M. Jirsa, M. Miryala, Tuning of superconductivity of bulk MgB2 by ball milling and sieving the boron precursor. Mater. Chem. Phys. 309, 128348 (2023)

    Article  CAS  Google Scholar 

  25. C.P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys. 36(1), 31–39 (1964)

    Article  Google Scholar 

  26. D.X. Chen, R.B. Goldfarb, Kim model for magnetization of type-II superconductors. J. Appl. Phys. 66(6), 2489–2500 (1989)

    Article  Google Scholar 

  27. D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Philos. Mag. 30(2), 293–305 (1974)

    Article  CAS  Google Scholar 

  28. L. Lutterotti, H. Wenk, S. Matthies, MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more, Proceeding of the twelfth international conference on textures of materials (ICOTOM-12), vol. 2 (NRC Research Press, 1999), pp. 1599–1604

  29. Z. Ma, Y. Liu, J. Huo, Influence of ball-milled amorphous B powders on the sintering process and superconductive properties of MgB2. Supercond. Sci. Technol. 22(12), 125006 (2009)

    Article  Google Scholar 

  30. S. Chen, K. Yates, M. Blamire, J. MacManus-Driscoll, Strong influence of boron precursor powder on the critical current density of MgB2. Supercond. Sci. Technol. 18(11), 1473–1477 (2005)

    Article  CAS  Google Scholar 

  31. J.H. Kim, S. Dou, J. Wang, D. Shi, X. Xu, M.S.-A. Hossain, W.K. Yeoh, S. Choi, T. Kiyoshi, The effects of sintering temperature on superconductivity in MgB2/Fe wires. Supercond. Sci. Technol. 20(5), 448–451 (2007)

    Article  CAS  Google Scholar 

  32. C.E. Dancer, D. Prabhakaran, A. Crossley, R. Todd, C. Grovenor, The effects of attrition and ball milling on the properties of magnesium diboride. Supercond. Sci. Technol. 23(6), 065015 (2010)

    Article  Google Scholar 

  33. J.G. Noudem, Y. Xing, P. Bernstein, R. Retoux, M. Higuchi, S.S. Arvapalli, M. Muralidhar, M. Murakami, Improvement of critical current density of MgB2 bulk superconductor processed by Spark Plasma Sintering. J. Am. Ceram. Soc. 103(11), 6169–6175 (2020)

    Article  CAS  Google Scholar 

  34. D. Larbalestier, L. Cooley, M. Rikel, A. Polyanskii, J. Jiang, S. Patnaik, X. Cai, D. Feldmann, A. Gurevich, A. Squitieri, Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nat. 410(6825), 186–189 (2001)

    Article  CAS  Google Scholar 

  35. B. Savaşkan, Strong influence of pressure on the magnetic properties of MgB2 bulk superconductors. Sakarya Univ. J. Sci. 27(1), 49–55 (2023)

    Article  Google Scholar 

  36. B. Savaskan, U. Ozturk, S. Guner, M. Abdioglu, M. Bahadır, S. Acar, M. Somer, A.M. Ionescu, C. Locovei, M. Enculescu, Bulk MgB2 superconductor for levitation applications fabricated with boron processed by different routes. J. Alloys Compd. 961, 170893 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Malik Shadab, one of the authors, expresses gratitude to SIT for their financial assistance in supporting his doctoral program.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MM; Methodology, MM; MS, Validation, MS, YX, MM—Original draft preparation, MS, MM; Writing—review and editing, MM and JN; Supervision, MM; Funding acquisition, MM.

Corresponding author

Correspondence to Muralidhar Miryala.

Ethics declarations

Competing interests

The authors assert that they do not possess any identifiable conflicting financial interests or personal relationships that might be perceived as exerting influence on the findings presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadab, M., Xing, Y., Noudem, J. et al. Enhanced superconducting properties in bulk MgB2 through spark plasma sintering of ball-milled and sieved crystalline boron. J Mater Sci: Mater Electron 35, 1712 (2024). https://doi.org/10.1007/s10854-024-13475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13475-7

Navigation