Skip to main content
Log in

Effect of raw material concentration on the morphology of nano-barium titanate ribbon-like fibers synthesized by hydrothermal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium titanate is a strong dielectric compound material with high dielectric constant and low dielectric loss. It is one of the most widely used materials in electronic ceramics. Barium titanate powders with different micromorphologies have different uses. Barium titanate powders with different micromorphology were prepared by hydrothermal method using titanium tetrachloride, barium chloride dihydrate as raw materials and glycol solution as reaction medium. In this study, XRD, SEM, Raman, LAS, TEM, EDI and other comprehensive analysis methods were used to study the effect of raw material concentration on the morphology of hydrothermal synthesis barium titanate powder. When the concentration of titanium ion is 0.02 mol/L, the resulting barium titanate has a fibrous morphology. With the increase of reactant concentration, the morphology of Barium titanate powder gradually becomes granular. This is because the lower the reactant concentration, the less the number of nucleation during crystal growth, the lower the competition between crystal nuclei for raw materials, and barium titanate is more inclined to preferentially oriented growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D. Li, X. Zeng, Z. Li, Z. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 10, 675–703 (2021)

    Article  CAS  Google Scholar 

  2. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43, 9593–9599 (2017)

    Article  CAS  Google Scholar 

  3. C. Fu, N. Chen, G. Du, Comparative studies of nickel doping effects at A and B sites of BaTiO3 ceramics on their crystal structures and dielectric and ferroelectric properties. Ceram. Int. 43, 15927–15931 (2017)

    Article  CAS  Google Scholar 

  4. X. Meng, Z. Zhang, D. Lin, W. Liu, S. Zhou, S. Ge, Y. Su, C. Peng, L. Zhang, Effects of particle size of dielectric fillers on the output performance of piezoelectric and triboelectric nanogenerators. J. Adv. Ceram. 10, 991–1000 (2021)

    Article  CAS  Google Scholar 

  5. Y.-M. Chiang, T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: II, origin of electrical barriers in positive-temperature-coefficient thermistors. J. Am. Ceram. Soc. 73, 3286–3291 (1990)

    Article  CAS  Google Scholar 

  6. P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, X. Wang, Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram. 10, 1153–1193 (2021)

    Article  CAS  Google Scholar 

  7. K. Hong, T.H. Lee, J.M. Suh, S.-H. Yoon, H.W. Jang, Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 7, 9782–9802 (2019)

    Article  CAS  Google Scholar 

  8. P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9, 1803048 (2019)

    Article  Google Scholar 

  9. A. Manohar, G.R. Reddy, N. Roy, M. Ubaidullah, Comprehensive characterization of a Mn0.1Mg0.9Fe2O4/CeO2/MgFe2O4 nanocomposite for high-performance supercapacitor applications. Ceram. Int. 7, 10436–10445 (2024)

    Article  Google Scholar 

  10. A. Manohar, V. Vijayakanth, N. Mameda, K.S. Ganesh, K.H. Kim, Revolutionizing nanoscience: exploring the multifaceted applications and cutting-edge advancements in spinel CaFe2O4 nanoparticles—a review. Inorg. Chem. Commun. 161, 111999 (2024)

    Article  CAS  Google Scholar 

  11. M. Inada, N. Enomoto, K. Hayashi, J. Hojo, S. Komarneni, Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol. Ceram. Int. 41, 5581–5587 (2015)

    Article  CAS  Google Scholar 

  12. T. Hoshina, Size effect of barium titanate: fine particles and ceramics. J. Ceram. Soc. Jpn. 121, 156–161 (2013)

    Article  CAS  Google Scholar 

  13. M.T. Buscaglia, M. Bassoli, V. Buscaglia, R. Alessio, Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2. J. Am. Ceram. Soc. 88, 2374–2379 (2005)

    Article  CAS  Google Scholar 

  14. L. Simon-Seveyrat, A. Hajjaji, Y. Emziane, B. Guiffard, D. Guyomar, Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications. Ceram. Int. 33, 35–40 (2007)

    Article  CAS  Google Scholar 

  15. J. Tao, J. Ma, Y. Wang, X. Zhu, J. Liu, X. Jiang, B. Lin, Y. Ren, Synthesis of barium titanate nanoparticles via a novel electrochemical route. Mater. Res. Bull. 43, 639–644 (2008)

    Article  CAS  Google Scholar 

  16. G.O.S. Santos, R.S. Silva, L.P. Costa, T.S.P. Cellet, A.F. Rubira, K.I.B. Eguiluz, G.R. Salazar-Banda, Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles. Ceram. Int. 40, 3603–3609 (2014)

    Article  CAS  Google Scholar 

  17. Z.B.H. Aga, S.R. Ramanan, Electrical and structural characterization of PTCR pure BaTiO3 nanopowders synthesized by sol–gel emulsion technique. J. Electroceram. 28, 109–117 (2012)

    Article  CAS  Google Scholar 

  18. A. Taheri Mofassal, M. Tajally, O. Mirzaee, Comparison between microwave and conventional calcination techniques in regard to reactivity and morphology of co-precipitated BaTiO3 powder, and the electrical and energy storage properties of the sintered samples. Ceram. Int. 43, 8057–8064 (2017)

    Article  CAS  Google Scholar 

  19. A. Manohar, P. Manivasagan, E.S. Jang, N. Mameda, S. Kumar, A. Kumar, M. Ubaidullah, K.H. Kim, Tailored Zn1xMg0.5CuxFe2O4 nanoparticles: optimizing magnetic hyperthermia for enhanced efficacy and investigating cytotoxicity in normal and cancer cell lines. Mater. Chem. Phys. 316, 129050 (2024)

    Article  CAS  Google Scholar 

  20. H. Xu, L. Gao, Hydrothermal synthesis of high-purity BaTiO3 powders: control of powder phase and size, sintering density, and dielectric properties. Mater. Lett. 58, 1582–1586 (2004)

    Article  CAS  Google Scholar 

  21. H.W. Lee, S. Moon, C.H. Choi, D.K. Kim, Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method. J. Am. Ceram. Soc. 95, 2429–2434 (2012)

    Article  CAS  Google Scholar 

  22. B.L. Newalkar, S. Komarneni, H. Katsuki, Microwave-hydrothermal synthesis and characterization of barium titanate powders. Mater. Res. Bull. 36, 2347–2355 (2001)

    Article  CAS  Google Scholar 

  23. J.O. Eckert, C.C. Hung-Houston, B.L. Gersten, Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 2929–2939 (2010)

    Article  Google Scholar 

  24. P. Pinceloup, C. Courtois, J. Vicens, A. Leriche, B. Thierry, Evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. J. Eur. Ceram. Soc. 19, 973–977 (1999)

    Article  CAS  Google Scholar 

  25. H. Xu, L. Gao, New evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. Mater. Lett. 57, 490–494 (2002)

    Article  CAS  Google Scholar 

  26. T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, T. Tsurumi, Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47, 7607 (2008)

    Article  CAS  Google Scholar 

  27. K. Kinoshita, A. Yamaji, Grain-size effects on dielectric properties in barium-titanate ceramics. J. Appl. Phys. 47, 371–373 (1976)

    Article  CAS  Google Scholar 

  28. B.D. Begg, K.S. Finnie, E.R. Vance, Raman study of the relationship between room-temperature tetragonality and the curie point of barium titanate. J. Am. Ceram. Soc. 79, 2666–2672 (1996)

    Article  CAS  Google Scholar 

  29. M.P. Fontana, M. Lambert, Linear disorder and temperature dependence of Raman scattering in BaTiO3. Solid State Commun. 10, 1–4 (1972)

    Article  CAS  Google Scholar 

  30. A.K. Sood, N. Chandrabhas, D.V.S. Muthu, A. Jayaraman, Phonon interference in BaTiO3: high-pressure Raman study. Phys. Rev. B 51, 8892–8896 (1995)

    Article  CAS  Google Scholar 

  31. U.A. Joshi, S. Yoon, S. Baik, J.S. Lee, Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J. Phys. Chem. B 110, 12249–12256 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3 part I—isolated particles and aggregates. J. Raman Spectrosc. 38, 1288–1299 (2007)

    Article  CAS  Google Scholar 

  33. X. Tian, J. Li, K. Chen, J. Han, S. Pan, Y. Wang, X. Fan, F. Li, Z. Zhou, Nearly monodisperse ferroelectric BaTiO3 hollow nanoparticles: size-related solid evacuation in ostwald-ripening-induced hollowing process. Cryst. Growth Des. 10, 3990–3995 (2010)

    Article  CAS  Google Scholar 

  34. W.Z. Zhong, Formation of OH defect in BaTiO3 crystallite under hydrothermal conditions. J Synth Cryst 25, 192–197 (1996)

    CAS  Google Scholar 

Download references

Funding

The present work was supported by the National Natural Science Foundation of China (52102139), the National Key Research and Development Program of Shaanxi Province (2021GY-224), the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education (KFM202106) and Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Ronghui Ye: Investigation, Data curation, Writing—original draft. Zhuo Wang: Conceptualization, Funding acquisition, Project administration, Supervision. Ying Xue: Software. Jingteng Kang: Supervision, Investigation. Ting Zhao: Supervision, Investigation.

Corresponding author

Correspondence to Zhuo Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, R., Wang, Z., Xue, Y. et al. Effect of raw material concentration on the morphology of nano-barium titanate ribbon-like fibers synthesized by hydrothermal. J Mater Sci: Mater Electron 35, 1750 (2024). https://doi.org/10.1007/s10854-024-13472-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13472-w

Navigation