Skip to main content
Log in

Effect of Yb2O3 doping on energy storage and dielectric properties of barium titanate based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To produce high-performance dielectric capacitors for pulsed power applications, BaTiO3@(MgO–Nb2O5)–xYb2O3 (BT@MNY-x) ceramics were prepared via solid-state reaction route. The BT@MNY ceramics retained tetragonal perovskite structure without other obvious phases. Profound structural tests by Rietveld refinement of XRD patterns verified Yb3+ substituted the Ti4+ sites. In addition, after Yb3+ ions were incorporated into the lattice of barium titanate, the cubic phase of barium titanate was slightly distorted, the lattice constant of the sample gradually increased, and the tetragonality of the sample gradually decreased. With the increase of Yb2O3 content, the porosity and the diffuseness degree (γ) of the ceramics first decreased and then increased, reaching the peak values in the BT@MNY-0.5 sample. In addition, the grain size and dielectric constant of the samples decreased with the increase of Yb2O3 content. As a result, the breakdown voltage of the ceramics and performance metrics such as effective energy storage density first increased and then decreased. The calculated activation energies (Ea = 0.9–1.1 eV) closely resemble those observed for oxygen vacancy conduction activation energy in perovskite systems (around 1 eV), indicating that the conductivity in the BT@MNY ceramics is likely governed by oxygen vacancies. When x = 0.5, environmentally friendly barium titanate-based ceramics with Wrec of 0.82 J/cm3 and η of 44.34% were achieved. This work provides a theoretical basis for high energy storage barium titanate ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Yan, J. Qian, S. Wang, J. Zhai, Nano Energy (2024). https://doi.org/10.1016/j.nanoen.2024.109394

    Article  Google Scholar 

  2. D. Li, X. Zeng, Z. Li et al., J. Adv. Ceram. 10, 675 (2021). https://doi.org/10.1007/s40145-021-0500-3

    Article  CAS  Google Scholar 

  3. C. Hou, W. Huang, W. Zhao, D. Zhang, Y. Yin, X. Li, ACS Appl. Mater. Interfaces. 9, 20484 (2017). https://doi.org/10.1021/acsami.7b02225

    Article  CAS  PubMed  Google Scholar 

  4. Z. Yao, Z. Song, H. Hao et al., Adv. Mater. (2017). https://doi.org/10.1002/adma.201601727

    Article  PubMed  Google Scholar 

  5. L. Yao, Z. Pan, S. Liu, J. Zhai, H.H. Chen, ACS Appl. Mater. Interfaces. 8, 26343 (2016). https://doi.org/10.1021/acsami.6b09265

    Article  CAS  PubMed  Google Scholar 

  6. H. Zhang, T. Wei, Q. Zhang et al., J. Mater. Chem. C 8, 16648 (2020). https://doi.org/10.1039/d0tc04381h

    Article  CAS  Google Scholar 

  7. G. Wang, Z. Lu, Y. Li et al., Chem. Rev. 121, 6124 (2021). https://doi.org/10.1021/acs.chemrev.0c01264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. X. Wu, Y. Xu, Y. Hu et al., Nat. Commun. 9, 4573 (2018). https://doi.org/10.1038/s41467-018-06914-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Yang, X. Kong, F. Li et al., Prog. Mater. Sci. 102, 72 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  10. W. Yang, H. Zeng, F. Yan et al., J. Mater. Chem. A 10, 11613 (2022). https://doi.org/10.1039/d2ta02534e

    Article  CAS  Google Scholar 

  11. F. Shang, J. Wei, J. Xu et al., ACS Appl. Mater. Interfaces. 14, 53081 (2022). https://doi.org/10.1021/acsami.2c16577

    Article  CAS  PubMed  Google Scholar 

  12. L. Liu, Y. Liu, J. Hao et al., Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2023.108275

    Article  PubMed  Google Scholar 

  13. B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, ACS Appl. Mater. Interfaces. 9, 19963 (2017). https://doi.org/10.1021/acsami.7b04175

    Article  CAS  PubMed  Google Scholar 

  14. S.S. Parizi, A. Mellinger, G. Caruntu, ACS Appl. Mater. Interfaces. 6, 17506 (2014). https://doi.org/10.1021/am502547h

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wenbo, Z. Chenghao, X. Yiming et al., J. Eur. Ceram. Soc. 43, 900 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.11.001

    Article  CAS  Google Scholar 

  16. S. Li, P. Ge, H. Tang et al., ACS Appl. Energy Mater. 5, 12174 (2022). https://doi.org/10.1021/acsaem.2c01679

    Article  CAS  Google Scholar 

  17. W. Huang, Y. Chen, X. Li, G. Wang, J. Xia, X. Dong, Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135523

    Article  PubMed  PubMed Central  Google Scholar 

  18. A.A. Instan, S.P. Pavunny, M.K. Bhattarai, R.S. Katiyar, Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4986238

    Article  Google Scholar 

  19. Z.B. Shen, X.H. Wang, D.S. Song, L.T. Li, Adv. Appl. Ceram. 115, 435 (2016). https://doi.org/10.1080/17436753.2016.1181814

    Article  CAS  Google Scholar 

  20. J.B. Lim, S. Zhang, T.R. Shrout, Electron. Mater. Lett. 7, 71 (2011). https://doi.org/10.1007/s13391-011-0311-8

    Article  CAS  Google Scholar 

  21. W. Liu, J. Gao, Y. Zhao, S. Li, J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155938

    Article  Google Scholar 

  22. D.W. Hahn, Y.H. Han, Jpn. J. Appl. Phys. (2009). https://doi.org/10.1143/jjap.48.111406

    Article  Google Scholar 

  23. X.H. Ren, D.Y. Gui, Materials (2021). https://doi.org/10.3390/ma14226802

    Article  PubMed  PubMed Central  Google Scholar 

  24. R. Waser, Ferroelectrics. 133, 109 (1992). https://doi.org/10.1080/00150199208217984

    Article  CAS  Google Scholar 

  25. C. Sidar, M.N. Tripathi, P.K. Bajpai, Comput. Condens. Matter. 11, 27 (2017). https://doi.org/10.1016/j.cocom.2017.03.005

    Article  Google Scholar 

  26. G.-W. Yan, M.-G. Ma, C.-B. Li et al., J. Alloy. Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158021

    Article  Google Scholar 

  27. R. Stumpe, D. Wagner, D Bäuerle, Phys. Status Solidi A 75, 143 (1983). https://doi.org/10.1002/pssa.2210750116

    Article  CAS  Google Scholar 

  28. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Adv. Appl. Ceram. 116, 439 (2017). https://doi.org/10.1080/17436753.2017.1352109

    Article  CAS  Google Scholar 

  29. G. Ge, K. Huang, S. Wu et al., Energy Storage Mater. 35, 114 (2021). https://doi.org/10.1016/j.ensm.2020.11.006

    Article  Google Scholar 

  30. C. Zhu, X. Wang, Q. Zhao, Z. Cai, Z. Cen, L. Li, J. Eur. Ceram. Soc. 39, 1142 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.034

    Article  CAS  Google Scholar 

  31. Z. Song, H. Liu, S. Zhang et al., J. Eur. Ceram. Soc. 34, 1209 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.039

    Article  CAS  Google Scholar 

  32. P. Guan, Y. Zhang, J. Yang, M. Zheng, Ceram. Int. 49, 11796 (2023). https://doi.org/10.1016/j.ceramint.2022.12.024

    Article  CAS  Google Scholar 

  33. B. Liu, X. Wang, R. Zhang, L. Li, J. Am. Ceram. Soc. 100, 3599 (2017). https://doi.org/10.1111/jace.14802

    Article  CAS  Google Scholar 

  34. Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146 (2015). https://doi.org/10.1039/c5ta03614c

    Article  CAS  Google Scholar 

  35. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Ceram. Int. 43, 9593 (2017). https://doi.org/10.1016/j.ceramint.2017.03.139

    Article  CAS  Google Scholar 

  36. X. Yi, C. Ji, G. Chen et al., Phys. Status Solidi A (2019). https://doi.org/10.1002/pssa.201900721

    Article  Google Scholar 

  37. X. Dong, H. Chen, M. Wei, K. Wu, J. Zhang, J. Alloy. Compd. 744, 721 (2018). https://doi.org/10.1016/j.jallcom.2018.01.276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shanghai Institute of Ceramics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Yang Gao: data curation, writing—original draft preparation. Tianyi Xie: conceptualization, methodology, software, writing—reviewing and editing. Huaizhi Wang: data curation, visualization, investigation, software. Junjie Yang: software, validation. Huixing Lin: supervision.

Corresponding authors

Correspondence to Tianyi Xie or Huixing Lin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xie, T., Wang, H. et al. Effect of Yb2O3 doping on energy storage and dielectric properties of barium titanate based ceramics. J Mater Sci: Mater Electron 35, 1719 (2024). https://doi.org/10.1007/s10854-024-13470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13470-y

Navigation