Skip to main content
Log in

Growth, characterization, spectroscopic examination and computational analysis of optical properties of 3-Carboxypropanaminium DL-tartrate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A slow evaporation solution growth approach was used for synthesizing 3-carboxypropanaminium DL-tartrate (3CPT). Powder X-ray diffraction verified the crystallinity of the material. The crystal’s optical characteristics and transmittance are revealed by the UV–Visible spectroscopic analysis. The crystal’s thermal equilibrium has been investigated using TGA/DTA testing. To study the crystal’s carbon and hydrogen environment, the FT NMR spectra were used. The present compound was investigated using both experimental and theoretical quantum calculations (optimized structure and IR) with the use of DFT theory at the B3LYP functional and 6–311 +  + G(d, p) basis set. Molecular orbitals for the HOMO and LUMO states show that the molecule experienced a significant change in charge. The molecule is subjected to ELF and LOL for topological research. The 3CPT has NLO characteristics, according to the hyperpolarizability calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. F.T. Stern, C. Beevers, The crystal structure of tartaric acid. Acta Cryst. 3(5), 341–346 (1950)

    Article  CAS  Google Scholar 

  2. Y. Okaya, N. Stemple, M. Kay, Refinement of the structure of D-tartaric acid by X-ray and neutron diffraction. Acta Cryst. 21(2), 237–243 (1966)

    Article  CAS  Google Scholar 

  3. D. Braga et al., Crystal engineering via negatively charged O-H··· O–and charge-assisted C–Hδ+··· Oδ–hydrogen bonds from the reaction of [Co (η5-C5H5) 2][OH] with polycarboxylic acids §. J. Chem. Soc., Dalton Trans. 12, 1961–1968 (1998)

    Article  Google Scholar 

  4. E. Weber et al., New crystalline hosts based on tartaric acid. Synthesis, inclusion properties, and x-ray structural characterization of interaction modes with alcohol guests. J. Org. Chem. 57(25), 6825–6833 (1992)

    Article  CAS  Google Scholar 

  5. S. Suguna, Y. Subbareddy, T. Jaison Jose, N. Ramakrishna Chand, D.S. Ramakrishna, P. Lakshmi Praveen, Synthesis, growth, and optical applications of N, N′-bis (2-aminophenyl) ethane-1,2-diammonium picrate: an organic crystal. J. Mol. Struct 1300, 137295 (2024)

    Article  CAS  Google Scholar 

  6. S. Renugadevi, G.V. Vijayaraghavan, S.R. Thilagavathy, H. Mohamed Mohaideen, R. Balu, Structural, optical, thermal, and dielectric studies of urea-doped potassium hydrogen phthalate single crystals: effect of ocimum tenuiflorum extract. J. Mater. Sci.: Mater. Electron 35, 994 (2024)

    CAS  Google Scholar 

  7. M. Akkurt, T. Hökelek, H. Soylu, Structure of potassium hydrogen L (+)-tartrate KH (C4H4O6). Zeitschrift für Kristallographie Cryst. Mater. 181(1–4), 161–166 (1987)

    CAS  Google Scholar 

  8. R. Balu et al., Crystal growth, structural, hirshfeld surface analysis of Dl-2 aminobutanoate tartrate single crystal. J. Mater. Sci.: Mater. Electron. 34(30), 2047 (2023)

    CAS  Google Scholar 

  9. Synthesis, growth, and characterizations of bis-ethylene diammonium diphenolsulfonate monohydrate single crystal: Optoelectronic and antibacterial aspects.

  10. G. Joesephine, R. Sambasivam, M. Prakash, G. Devendrapandi, J.R. Rajabathar, R. Balu, Growth, structural, and spectroscopic investigations on 4,5-dimethyl-1,3-dioxol-2-one single crystal. J. Mater. Sci.: Mater. Electron 35, 218 (2024)

    CAS  Google Scholar 

  11. U. Rychlewska et al., (R, R)-tartaric acid dimethyl diester from x-ray and ab initio studies: factors influencing its conformation and packing. Molecules 2(7), 106–113 (1997)

    Article  CAS  Google Scholar 

  12. J. Kivikoski et al., Timolol derivatives. I. X-ray, NMR and theoretical studies of the crystallization of (S)-timolol O O-diacetyl-l-tartaric acid monoester. Tetrahedron: Asymmetry 4(4), 709–722 (1993)

    Article  CAS  Google Scholar 

  13. T. Koritsanszky, D. Zobel, P. Luger, Topological analysis of experimental electron densities. 3. potassium hydrogen (+)− tartrate at 15 K. J. Phys. Chem. A 104(7), 1549–1556 (2000)

    Article  CAS  Google Scholar 

  14. M. Akkurt et al., Crystal structure of hydroxyethylammonium L-tartrate monohydrate, C2H8NO+C4H5O6–H2O. Zeitschrift für Kristallographie-New Cryst. Struct. 215(1), 71–72 (2000)

    Article  CAS  Google Scholar 

  15. N. Backiyalakshmi, R. Manoranjitham, C. Anthoniammal Panneerselvam, R.S. Usha, G. Devendrapandi, R. Balu, A combined theoretical and experimental study of the D-2-aminobutyric acid L-norvaline single crystal for efficient third-order nonlinear optical (NLO) applications. J. Mol. Struct. 1292, 136153 (2023)

    Article  CAS  Google Scholar 

  16. P. Starynowicz, G. Meyer, Synthesis and crystal structure of europium (II) tartrate tetrahydrate, [Eu (C4H4O6)(H2O) 2](H2O) 2. Z. Anorg. Allg. Chem. 626(12), 2441–2442 (2000)

    Article  CAS  Google Scholar 

  17. U. Rychlewska, B. Warżajtis, Inclusion properties of (R, R)-O, O′-dibenzoyltartrdiamide: influence of the guest on the molecular conformation of the host. J. Mol. Struct. 647(1–3), 141–150 (2003)

    Article  CAS  Google Scholar 

  18. G. Srivastava, S. Mohan, Y. Jain, Laser Raman and infrared spectra of di-potassium tartrate hemi-hydrate. J. Raman Spectrosc. 13(1), 25–29 (1982)

    Article  CAS  Google Scholar 

  19. N. Kaneko, M. Kaneko, H. Takahashi, Infrared and Raman spectra and vibrational assignment of some metal tartrates. Spectrochim. Acta, Part A 40(1), 33–42 (1984)

    Article  Google Scholar 

  20. V. Ramakrishnan, J.M. Maroor, IR and Raman studies of gel grown manganese tartrate. Infrared Phys. 28(4), 201–204 (1988)

    Article  CAS  Google Scholar 

  21. R. Balu, A. Panneerselvam, G. Devendrapandi, J.R. Rajabathar, H.A. Al-Lohedan, D.M. Al-Dhayan, Theoretical and experimental spectroscopic studies and analysis for wave function on N-phenylmorpholine-4-carboxamide benzene-1,2-diamine with computational techniques. Spectroc. Acta Part A: Mol. Biomol. Spectrosc. 301(15), 122988 (2023)

    Article  CAS  Google Scholar 

  22. Z. Chen, H.L. Strauss, Infrared hole burning of ammonium tartrate: how high a barrier can be overcome? J. Chem. Phys. 108(13), 5522–5528 (1998)

    Article  CAS  Google Scholar 

  23. P. Polavarapu, C. Ewig, T. Chandramouly, Conformations of tartaric acid and its esters. J. Am. Chem. Soc. 109(24), 7382–7386 (1987)

    Article  CAS  Google Scholar 

  24. M. Koralewski, M. Szafranski, Pecularities of optical activity of NaNH4 tartrate crystals. Ferroelectrics 80(1), 269–272 (1988)

    Article  Google Scholar 

  25. M. Szafrański, Deflection and diffraction of light by ferroelastic crystals of sodium-ammonium tartrate tetrahydrate and lithium-ammonium tartrate monohydrate. Ferroelectrics 129(1), 55–65 (1992)

    Article  Google Scholar 

  26. R. Balu, A.R. Ayub, M. Anthoniammal Panneerselvam, S. Devi, J.R. Rajabathar, H. Al-Lohedan, G. Devendrapandi, Growth, experimental and theoretical investigation on the nonlinear optical, vibrational, and electronic properties of L-2-aminobutyric acid D-methionine crystal: a combined experimental and quantum chemical approach. J. Mater. Sci.: Mater. Electron 35, 874 (2024)

    CAS  Google Scholar 

  27. M. Maeda, K. Honda, I. Suzuki, Dielectric elastic and piezoelectric properties of the mixed crystals system Na [K1-x (NH4) x]-tartrate (0.90< x< 1.0). J. Phys. Soc. Jpn. 64(7), 2642–26495 (1995)

    Article  CAS  Google Scholar 

  28. K. Deguchi, Y. Iwata, Effects of Deuteration on Displacive-Type Ferroelectric Phase Transition of LiTlC 4 H 4 O 6· H 2 O. J. Phys. Soc. Jpn. 69(1), 135–138 (2000)

    Article  CAS  Google Scholar 

  29. B. Gerth et al., Specific heat capacity of lithium-thallium-tartrate at low tempera+tures. Phys. Stat. Sol. (a) 57(2), K153–K156 (1980)

    Article  CAS  Google Scholar 

  30. S. Debrus et al., L-lysine-L-tartaric acid: new molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions. J. Sol. State Chem. 178(9), 2880–2896 (2005)

    Article  CAS  Google Scholar 

  31. P. Velusamy, R. Ramesh Babu, M. Sathiya, A. Ahmad, A.A. Alothman, M.S.S. Mushab, E. Elamurugu, M.S. Pandian, P. Ramasamy, Incorporation of Ti3+ metal ions in chemically spray deposited CdO thin films for optoelectronic and chem-resistive based formaldehyde gas sensor applications. New J. Chem. 46, 22469–22485 (2022)

    Article  CAS  Google Scholar 

  32. I. Kanesaka, H. Kita, Vibrational study on phase transition in ammonium Rochelle salt. J. Raman Spectrosc. 23(11), 585–588 (1992)

    Article  CAS  Google Scholar 

  33. G. Josephine, R. Sambasivam, M. Prakash, R. Jayasree, C. Usha, J.R. Rajabathar, H. Al-lohedan, G. Devendrapandi, R. Balu, Investigation on the growth, characterization, spectroscopic studies and computational analysis of nonlinear optical β-alanine tartrate single crystal. J. Mater. Sci.: Mater. Electron 35, 987 (2024)

    CAS  Google Scholar 

  34. I. Kanesaka, N. Kita, Vibrational Study on the Phase Transition in Lithium Ammonium Tartrate. J. Raman Spectrosc. 27(11), 811–816 (1996)

    Article  CAS  Google Scholar 

  35. S. Kamba et al., Study of the phase transition in lithium ammonium tartrate monohydrate (LAT) by means of infrared and Raman spectroscopy. J. Phys.: Condens. Matter 8(44), 8669 (1996)

    CAS  Google Scholar 

  36. R. Vasanthakumari, W. Nirmala, Suresh Sagadevan, S Mugeshini, N Rajeswari, Ranjith Balu, R Santhakumari, Synthesis, growth, crystal structure, vibrational, DFT and HOMO, LUMO analysis on protonated molecule-4-aminopyridinium nicotinate. J. Mol. Struct. 1239, 130449 (2021)

    Article  CAS  Google Scholar 

  37. M. Marchewka et al., Crystal structure, vibrational spectra and nonlinear optical properties of tetrakis (2, 4, 6-triamino-1, 3, 5-triazin-1-ium) bis (selenate) trihydrate crystal. Sol. State Sci. 5(4), 643–652 (2003)

    Article  CAS  Google Scholar 

  38. S. Renugadevi, G.V. Vijayaraghavan, Ranjith Balu, the bioactive Cathananthus roseus Mediated with urea doped Potassium Hydrogen Phthalate single crystal an effective optical, dielectric, and anticancer activities. J. Mol. Struct. 1301, 137328 (2024)

    Article  CAS  Google Scholar 

  39. Albert, H.M., et al., ISSN 0975–413X CODEN (USA): PCHHAX.

  40. T.G. Row, Hydrogen and fluorine in crystal engineering: systematics from crystallographic studies of hydrogen bonded tartrate–amine complexes and fluoro-substituted coumarins, styrylcoumarins and butadienes. Coord. Chem. Rev. 183(1), 81–100 (1999)

    Article  CAS  Google Scholar 

  41. M. Oussaid et al., Raman scattering in 2-Amino-5-Nitropyridine-L-(+)-Tartrate single crystals. Phys. Stat. Sol. (b) 196(2), 487–494 (1996)

    Article  CAS  Google Scholar 

  42. I. Matulková et al., Novel material for second harmonic generation: 3-Amino-1, 2, 4-triazolinium (1+) hydrogen l-tartrate. J. Mol. Struct. 834, 328–335 (2007)

    Article  Google Scholar 

  43. N. Blagden, K. Seddon, Computation of the first hyperpolarizability, β, for hydrogen-bonded salts and acid–base pairs. Cryst. Eng. 2(1), 9–25 (1999)

    Article  CAS  Google Scholar 

  44. A. Paduan-Filho, C.C. Becerra, Weak ferromagnetism in manganese tartrate dihydrate MnC4H4O6 2H2O. J. Phys.: Condens. Matter 12(9), 2071 (2000)

    CAS  Google Scholar 

  45. C.H. Gorbitz, L-2-Aminobutyric acid: two fully ordered polymorphs with z. Acta Cryst. B-Struct. Sci. Cryst. Eng. Mater. 66, 253–259 (2010)

    Article  Google Scholar 

  46. E.A. Losev, E. Boldyreva, Concomitant cocrystal and salt: no interconversion in the solid state. Acta Cryst. Sec. C: Struct. Chem. 75(3), 313–319 (2019)

    Article  CAS  Google Scholar 

  47. T. Punyatoya Das, J. Jose, A.K. Sharma, D.S. Ramakrishna, P. Lakshmi Praveen, Ultraviolet response data of liquid crystals for bioprocess monitoring: a methodical exploration. J. Mol. Struct. 1305(5), 137805 (2024)

    Google Scholar 

  48. J.-I. Aihara, Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103(37), 7487–7495 (1999)

    Article  CAS  Google Scholar 

  49. Y. Ruiz-Morales, HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: a theoretical study I. J. Phys. Chem. A 106(46), 11283–11308 (2002)

    Article  CAS  Google Scholar 

  50. P. Geerlings et al., Conceptual DFT: chemistry from the linear response function. Chem. Soc. Rev. 43(14), 4989–5008 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. P. Geerlings, F. De Proft, External fields in conceptual density functional theory. J. Comput. Chem. 44(3), 442–455 (2023)

    Article  CAS  PubMed  Google Scholar 

  52. R. Singh, H. Khanam, J. Pandey, Optimization, first-order hyperpolarizability studies of o, m, and p-Cl benzaldehydes using DFT studies. Chem. Proc. 14(1), 92 (2023)

    Google Scholar 

  53. Y. Lin et al., Evaluation of mechanical properties of Ti–6Al–4V BCC lattice structure with different density gradient variations prepared by L-PBF. Mater. Sci. Eng., A 872, 144986 (2023)

    Article  CAS  Google Scholar 

  54. M. Prasad, U. Mahadevaswamy, Density gradient study on junctionless stack nano-sheet with stack gate oxide for low power application. IETE J. Res. 69(3), 1429–1436 (2023)

    Article  Google Scholar 

  55. K. Chen et al., Physics-inspired machine learning of localized intensive properties. Chem. Sci. 14(18), 4913–4922 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Q. Guo et al., Stitching electron localized heptazine units with “carbon patches” to regulate exciton dissociation behavior of carbon nitride for photocatalytic elimination of petroleum hydrocarbons. Chem. Eng. J. 452, 139092 (2023)

    Article  CAS  Google Scholar 

  57. F. Gou et al., Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media. Appl. Surf. Sci. 612, 155872 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by the Researchers Supporting Project number (RSP2024R273), King Saud University, Riyadh 11451, Saudi Arabia.

Funding

The authors acknowledge and this work was funded by the Researchers Supporting Project number (RSP 2024R273354), King Saud University, Riyadh 11451, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

C.Usha: Data curation, formal analysis, methodology, writing—original draft. Ali Raza Ayub, Anthoniammal Panneerselvam, M. Sumithra Devi, R. Jayasree, Tahani Mazyad Almutairi, Gautham Devendrapandi: data curation, formal analysis, software. Ranjith Balu: data curation, formal analysis, methodology, conceptualization, resources, supervision.

Corresponding authors

Correspondence to Gautham Devendrapandi or Ranjith Balu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Consent to participate

The authors agreed that they participating in the research work.

Consent to publication

The authors agreed to publish this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usha, C., Ayub, A.R., Panneerselvam, A. et al. Growth, characterization, spectroscopic examination and computational analysis of optical properties of 3-Carboxypropanaminium DL-tartrate single crystal. J Mater Sci: Mater Electron 35, 1716 (2024). https://doi.org/10.1007/s10854-024-13444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13444-0

Navigation