Skip to main content
Log in

Tourmaline@ZnO nanoplates for n-butanol detection induced by the polarized electric field and its DFT study of ZnO (001) surface

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

N-butanol is a main kind of volatile organic compounds (VOCs) that cause increasingly serious environmental and health issues. Many efforts have been taken to curb the damage as a crucial task is to efficiently detect the VOCs. Although plenty kinds of gas sensors have been fabricated, there remains scarce research covering high response-value for n-butanol. Therefore, ZnO nanoplates exposing preferentially (001) surface have been synthesized around cores of tourmaline particles, which provide an electric field by spontaneous polarization and enhance gas-sensing sensitivity targeting n-butanol. XRD, SEM, TEM, XPS, BET, and UV–vis measurements were carried out to measure morphology, microstructure, as well as surface and electron states. We varied the mass ratio of tourmaline to ZnO and found 5wt%Toumaline@ZnO nanoplates achieved the most excellent response value which is approximately four times higher than the pristine ZnO, along with the fine repeatability for 100 ppm n-butanol and favorable recovery for different concentration of n-butanol at 340 °C. To explain the excellent gas sensing performance, the density functional theory calculations were conducted. It was been found that the ZnO (001) surface tends to polarize by the electric field of tourmaline. Furthermore, the electric field strengthens the electron accumulation on the ZnO (001) surface and provides more density of states near the Fermi level for superior gas sensitivity, thus effectively enhancing the performance and stability of the Toumaline@ZnO composited system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support this finding of the study is available from the corresponding author upon reasonable request.

References

  1. Y. Shen, Fuel (2023). https://doi.org/10.1016/j.fuel.2022.126801

    Article  Google Scholar 

  2. Q. Pan et al., Environ. Int. 174, 107886 (2023). https://doi.org/10.1016/j.envint.2023.107886

    Article  CAS  PubMed  Google Scholar 

  3. Q. Lin, Z. Gao, W. Zhu, J. Chen, T. An, J. Environ. Sci. (China) 126, 722–733 (2023). https://doi.org/10.1016/j.jes.2022.03.005

    Article  CAS  PubMed  Google Scholar 

  4. H. Nazemi, A. Joseph, J. Park, A. Emadi, Sensors (Basel) (2019). https://doi.org/10.3390/s19061285

    Article  PubMed  Google Scholar 

  5. T.-J. Hsueh, S.-H. Lee, J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/abdfa9

    Article  Google Scholar 

  6. P. Patial, M. Deshwal, Trans. Electr. Electron. Mater. 23, 6–18 (2021). https://doi.org/10.1007/s42341-021-00367-4

    Article  Google Scholar 

  7. H. Ji, W. Zeng, Y. Li, Nanoscale 11, 22664–22684 (2019). https://doi.org/10.1039/c9nr07699a

    Article  CAS  PubMed  Google Scholar 

  8. M. Donarelli, L. Ottaviano, Sensors (Basel) (2018). https://doi.org/10.3390/s18113638

    Article  PubMed  Google Scholar 

  9. T.K. Seiyama, S. Anal, Chem. 38, 1069–1073 (1966)

    CAS  Google Scholar 

  10. K.N. Devi, S.A. Devi, W.J. Singh, K.J. Singh, J. Mater. Sci.: Mater. Electron. 32, 8733–8745 (2021). https://doi.org/10.1007/s10854-021-05545-x

    Article  CAS  Google Scholar 

  11. M. Wusiman, F. Taghipour, Solid State Mater. Sci. 47, 416–435 (2021). https://doi.org/10.1080/10408436.2021.1941752

    Article  CAS  Google Scholar 

  12. Y. Fan, Y. Xu, Y. Wang, Y. Sun, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160170

    Article  Google Scholar 

  13. J. Siregar et al., J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/abd928

    Article  Google Scholar 

  14. G.H. Mhlongo et al., Appl. Surf. Sci. 390, 804–815 (2016). https://doi.org/10.1016/j.apsusc.2016.08.138

    Article  CAS  Google Scholar 

  15. M. Yin, S. Liu, Mater. Chem. Phys. 149–150, 344–349 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.027

    Article  CAS  Google Scholar 

  16. O. Alev et al., Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.106149

    Article  Google Scholar 

  17. S. Rani et al., Environ. Res. 191, 110005 (2020). https://doi.org/10.1016/j.envres.2020.110005

    Article  CAS  PubMed  Google Scholar 

  18. L. Sun, Y. Guo, Y. Hu, S. Pan, Z. Jiao, Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2021.129793

    Article  PubMed  Google Scholar 

  19. A.E. Kasapoğlu, S. Habashyani, A. Baltakesmez, D. İskenderoğlu, E. Gür, Int. J. Hydrogen Energy 46, 21715–21725 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.229

    Article  CAS  Google Scholar 

  20. W. Guan et al., Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00076

    Article  PubMed  PubMed Central  Google Scholar 

  21. N. Singh, A. Ponzoni, R.K. Gupta, P.S. Lee, E. Comini, Sens. Actuators, B Chem. 160, 1346–1351 (2011). https://doi.org/10.1016/j.snb.2011.09.073

    Article  CAS  Google Scholar 

  22. R. Guo et al., Ceram. Int. 46, 7065–7073 (2020). https://doi.org/10.1016/j.ceramint.2019.11.198

    Article  CAS  Google Scholar 

  23. Y. Mun, S. Park, H. Ko, C. Lee, S. Lee, J. Korean Phys. Soc. 63, 1595–1600 (2013). https://doi.org/10.3938/jkps.63.1595

    Article  CAS  Google Scholar 

  24. Q. Mi, D. Zhang, X. Zhang, D. Wang, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158252

    Article  Google Scholar 

  25. G. Chen et al., MOF-Derived ACS Appl. Nano Mater. 6, 10725–10735 (2023). https://doi.org/10.1021/acsanm.3c01713

    Article  CAS  Google Scholar 

  26. J. Zong-Zhe, J. Zhi-Jiang, L. Jin-Sheng, W. Jing, S. Tong-Bo, Chin. Phys. 12, 222–225 (2003)

    Article  Google Scholar 

  27. J. Li et al., Arab. J. Chem. (2023). https://doi.org/10.1016/j.arabjc.2022.104436

    Article  PubMed  PubMed Central  Google Scholar 

  28. H. Zhang et al., Sens. Actuators B: Chem. (2022). https://doi.org/10.1016/j.snb.2022.132100

    Article  PubMed  Google Scholar 

  29. H. Liu et al., J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.163000

    Article  Google Scholar 

  30. J. Xu, Z. Xue, N. Qin, Z. Cheng, Q. Xiang, Sens. Actuators, B Chem. 242, 148–157 (2017). https://doi.org/10.1016/j.snb.2016.09.193

    Article  CAS  Google Scholar 

  31. T. Sin Tee et al., Sens. Actuators, B Chem. 227, 304–312 (2016). https://doi.org/10.1016/j.snb.2015.12.058

    Article  CAS  Google Scholar 

  32. T.T. Nguyet et al., J. Electron. Mater. 52, 304–319 (2022). https://doi.org/10.1007/s11664-022-09990-0

    Article  CAS  Google Scholar 

  33. J. Hu et al., Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153980

    Article  Google Scholar 

  34. Y.V. Kaneti et al., Phys. Chem. Chem. Phys. 16, 11471–11480 (2014). https://doi.org/10.1039/c4cp01279h

    Article  CAS  PubMed  Google Scholar 

  35. Y. Zhang et al., J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162497

    Article  Google Scholar 

  36. P.W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979)

    Article  CAS  Google Scholar 

  37. G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558

    Article  CAS  PubMed  Google Scholar 

  38. G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter 49, 14251–14269 (1994). https://doi.org/10.1103/physrevb.49.14251

    Article  CAS  PubMed  Google Scholar 

  39. P.E. Blochl, Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953

    Article  CAS  PubMed  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  41. T. Nakamura, T. Kubo, T Ferroelectrics 137, 13–31 (2011). https://doi.org/10.1080/00150199208015933

    Article  Google Scholar 

  42. H.J. Gotsis, N.C. Bacalis, J.P. Xanthakis, Micromachines (Basel) (2022). https://doi.org/10.3390/mi13060888

    Article  PubMed  Google Scholar 

  43. L. Fu, Y. Guo, S. Pan, J. Huang, L. Wang, Surf. Coat. Technol. 359, 190–196 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.020

    Article  CAS  Google Scholar 

  44. R. Shi, P. Yang, X. Dong, Q. Ma, A. Zhang, Appl. Surf. Sci. 264, 162–170 (2013). https://doi.org/10.1016/j.apsusc.2012.09.164

    Article  CAS  Google Scholar 

  45. S. Agarwal et al., Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2021.130510

    Article  Google Scholar 

  46. B. Cao et al., J. Phys. Chem. C 111, 2470–2476 (2007). https://doi.org/10.1021/jp066661l

    Article  CAS  Google Scholar 

  47. J.-N. Li et al., Modern Phys. Lett. B (2017). https://doi.org/10.1142/s0217984917503109

    Article  Google Scholar 

  48. W. Geng, X. Zhao, W. Zan, H. Liu, X. Yao, Phys. Chem. Chem. Phys. 16, 3542–3548 (2014). https://doi.org/10.1039/c3cp52841c

    Article  CAS  PubMed  Google Scholar 

  49. S. Bhattacharjee et al., Dalton Trans. 49, 7872–7890 (2020). https://doi.org/10.1039/d0dt01167c

    Article  CAS  PubMed  Google Scholar 

  50. S. Pan et al., J. Mater. Sci.: Mater. Electron. 33, 7501–7514 (2022). https://doi.org/10.1007/s10854-022-07888-5

    Article  CAS  Google Scholar 

  51. H. Xu et al., J. Membr. Sci. (2022). https://doi.org/10.1016/j.memsci.2022.120452

    Article  Google Scholar 

  52. W. Kim, M. Choi, K. Yong, Sens. Actuators, B Chem. 209, 989–996 (2015). https://doi.org/10.1016/j.snb.2014.12.072

    Article  CAS  Google Scholar 

  53. T.-C. Shao et al., Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2021.130293

    Article  PubMed  Google Scholar 

  54. Y. Xing et al., Sens. Actuators B: Chem. (2022). https://doi.org/10.1016/j.snb.2022.132356

    Article  Google Scholar 

  55. B. Jiang et al., Sens. Actuators B: Chem. (2023). https://doi.org/10.1016/j.snb.2023.133626

    Article  PubMed  Google Scholar 

  56. Q. Li, Y. Cui, J. Lin, C. Zhao, L. Ding, J. Ind. Eng. Chem. 110, 542–551 (2022). https://doi.org/10.1016/j.jiec.2022.03.032

    Article  CAS  Google Scholar 

  57. L. Kamrani Moghaddam, S. Ramezani Paschepari, M.A. Zaimy, A. Abdalaian, A. Jebali, Cancer Gene Ther. 23, 321–325 (2016). https://doi.org/10.1038/cgt.2016.38

    Article  CAS  PubMed  Google Scholar 

  58. J. Zhang et al., Sens. Actuators, B Chem. 291, 458–469 (2019). https://doi.org/10.1016/j.snb.2019.04.058

    Article  CAS  Google Scholar 

  59. J. Yu, D. Wang, V.V. Tipparaju, F. Tsow, X. Xian, ACS Sens 6, 303–320 (2021). https://doi.org/10.1021/acssensors.0c01644

    Article  CAS  PubMed  Google Scholar 

  60. E. Cao et al., Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.128783

    Article  PubMed  Google Scholar 

  61. X. Zhang et al., Sens. Actuators, B Chem. 289, 144–152 (2019). https://doi.org/10.1016/j.snb.2019.03.090

    Article  CAS  Google Scholar 

  62. L. Cheng et al., J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158205

    Article  Google Scholar 

  63. J. Ma et al., Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2019.127456

    Article  PubMed  Google Scholar 

  64. H. Chen, A. Kolpak, S. Ismail-Beigi, Phys. Rev. B 82, 085430 (2010). https://doi.org/10.1103/PhysRevB.82.085430

    Article  CAS  Google Scholar 

  65. S.B. Mishra, S.C. Roy, B.R.K. Nanda, Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148709

    Article  Google Scholar 

  66. G. Kresse, O. Dulub, U. Diebold, Phys. Rev. B 68, 245409 (2003). https://doi.org/10.1103/PhysRevB.68.245409

    Article  CAS  Google Scholar 

  67. S. Bhattacharjee et al., Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05638-2

    Article  Google Scholar 

  68. M. Liangruksa, P. Sukpoonprom, A. Junkaew, W. Photaram, C. Siriwong, Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148868

    Article  Google Scholar 

  69. M. Shajahani, H. Rezagholipour Dizaji, Chem. Phys. Lett. (2023). https://doi.org/10.1016/j.cplett.2023.140884

    Article  Google Scholar 

  70. Z. Zhang et al., Mater. Today Commun. (2024). https://doi.org/10.1016/j.mtcomm.2023.107908

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11875186). We are also grateful to the Instrumental analysis and Research Center (Shanghai University, Shanghai, People’s Republic of China). We appreciate the High Performance Computing Center of Shanghai University, and Shanghai Engineering Research Center of Intelligent Computing System (No. 19DZ2252600) for providing the computing resources and technical support.

Author information

Authors and Affiliations

Authors

Contributions

Guohao Li and Xuechun Yang for material preparation, data collection, DFT calculation, and writing original draft; Yun Guo for investigation and methodology; Xiaoshun Wei, Yinzhong Liu for formal analysis, and writing-review & editing; Haibo Guo for the inspection and guidance of DFT calculation. Lingli Cheng, Zheng Jiao for supervision, validation, and resources.

Corresponding authors

Correspondence to Yun Guo or Zheng Jiao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and is not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Ethical approval

This study does not include any human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1033 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Yang, X., Guo, Y. et al. Tourmaline@ZnO nanoplates for n-butanol detection induced by the polarized electric field and its DFT study of ZnO (001) surface. J Mater Sci: Mater Electron 35, 1020 (2024). https://doi.org/10.1007/s10854-024-12733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12733-y

Navigation