Skip to main content

Advertisement

Log in

Growth, investigation of calcium D-gluconate monohydrate-CDG crystals with shocked impact for electronic usage and the pure crystal for sensor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CDG – calcium D-Gluconate monohydrate is the orthorhombic type of crystalline specimen identified from single crystal XRD grown by slow evaporation methodology; the 2 MPa pressure with 2.2 Mach number of shock wave pulses with 864 K temperature of which three versatile categories of 50, 100, and 150 scalings are preceded with the CDG sample and are represented after applied shock wave pulses as CDG-50; CDG-100 and CDG-150. The single crystal XRD of pure CDG is 6.7123, 13.3648, and 19.5447 in Å for bond lengths and bond angles are 90° each with P212121 space group; orthorhombic system for CDG-50, CDG-100, and CDG-150 is 6.7167, 13.3747, and 19.5886, 6.7201, 13.3808, and 19.5898, and 6.7278, 13.3888, and 19.5977, respectively, and angles are same as 90°; and lengths are in Å units. The transparent nature of the materials of the CDG-50 is of 218 nm, the CDG-100 is of 221 nm cut-off wavelength, and finally the CDG-150 is of 220 nm wavelength. The corresponding photonic case of utilization is identified as 5.62 eV, 5.64 eV, and 5.68 eV, respectively, for CDG-50, CDG-100, and CDG-150. The fluorescence analysis of the all CDG shock pulsed samples having bandgap values pertaining to all CDG samples as 2.6956 eV, 2.8440 eV and 2.7312 eV, respectively, for bluish emission for all. The SEM of all samples is free from flaws and rod / bar-like pattern and thorny bar-like structures are observed. The CDG-50, CDG-100, and CDG-150 specimens are of negative photoconductivity type of classification. Dielectric characteristics are measured, and variations may be due to increased defects because of the high applied pressure by shock waves. The red LED with photodetector source for macro-scaled CDG’s sensor analysis is studied and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data are fully used and presented here and there is no separate repository for data.

References

  1. Y.-Y. Di, Y.-P. Guo-Chun Zhang, Y.-X. Liu, C.-S. Zhou, J. Mol. Struct. 1225, 128818 (2021)

    Article  CAS  Google Scholar 

  2. P.E. Milsom, J.L. Meers, Comprehensive biotechnol, vol. 3 (Pergamon Press, Oxford, 1985), pp.681–700

    Google Scholar 

  3. D.T. Sawyer, Chem. Rev. 64, 633–644 (1964)

    Article  CAS  Google Scholar 

  4. H. Znad, J. Markos, V. Bales, Process. Biochem. 39, 1341e1345 (2004)

    Article  Google Scholar 

  5. M. Roehr, C.P. Kubicek, J. Kominek, 6 (Verlag Chemic, Weinheim, 1996), pp.347–362

    Google Scholar 

  6. A. Das, P.N. Kundu, J. Sci. Ind. Res. 46, 307–331 (1987)

    CAS  Google Scholar 

  7. A. Sharma, V. Vivekanand, R.P. Singh, Bioresour. Technol. 99, 3444e3450 (2008)

    Google Scholar 

  8. P. Milsom, J. Meers, 3 (Pergamon Press, Oxford, 1985), pp.681–700

    Google Scholar 

  9. F.J. Prescott, J.K. Shaw, J.I. Bilello, G.O. Cragwell, Ind. Eng. Chem. 45, 338–342 (1953)

    Article  CAS  Google Scholar 

  10. H.D. Pohland, V. Schierz, R. Schumann, Acta Biotechnol. 13, 257–268 (1993)

    Article  Google Scholar 

  11. J. Bao, K. Furumoto, K. Fukunaga, K. Nakao, Biochem. Eng. J. 8, 91e102 (2001)

    Article  Google Scholar 

  12. H. de Wilt, Ind. Eng. Chem. Prod. Res. Dev. 11, 370–373 (1972)

    Google Scholar 

  13. Yu. Panpan, Y. Zhen, H. Dong, Hu. Wenping, Chem 5, 1–40 (2019)

    Article  Google Scholar 

  14. L. Kang, K. Wang, S. Li, J. Liu, K. Yang, B. Liu, B. Zou, J. Phys. Chem. C 118, 8521–8530 (2014). https://doi.org/10.1021/jp412112g

    Article  CAS  Google Scholar 

  15. D.S. Ajisha, R. EzhilVizhi, Results Phys. 26, 10483 (2021)

    Article  Google Scholar 

  16. W. Zhu, Z. Song, X. Deng, H. He, X. Cheng, Phys. Rev. B 75, 024104 (2007)

    Article  Google Scholar 

  17. S.N. Luo, T.G. Germann, D.L. Tonks, Q. An, J. Appl. Phys. 108, 093526 (2010)

    Article  Google Scholar 

  18. A.Sivakumar, S.Suresh, S.Balachandar, J.Thirupathy, J. KalyanaSundar, S.A. Martin 15 BrittoDhasOptic.Laser.Tech 111: 284–289 (2019)

  19. A. Sivakumar, S.R. Devi, S.S. Dhas, R.M. Kumar, K.K. Bharathi, S.M. Dhas, Cryst. Growth Des. 20, 7111–7119 (2020). https://doi.org/10.1021/acs.cgd.0c00214

    Article  CAS  Google Scholar 

  20. J.H. Joshi , S.A. Martin BrittoDhas , D.K. Kanchan , M.J. Joshi d, K.D. Parikh,Journal of Physics and Chemistry of SolidsVolume 150, March 2021, 109885

  21. A. Sivakumar, S. Suresh, J. Anto Pradeep, S. Balachandar, S.A. Martin Britto Dhas, J. Elect. Mater. 47, 4831–4839 (2018). https://doi.org/10.1007/s11664-019-07510-1

    Article  CAS  Google Scholar 

  22. K. Funke, Prog. Solid State Chem. 22, 111–195 (1993). https://doi.org/10.1016/0079-6786(93)9002-9

    Article  CAS  Google Scholar 

  23. M.S. Jayswal, D.K. Kanchan, P. Sharma, N. Gondaliya, Mater. Sci. Eng. B 178, 775–784 (2013). https://doi.org/10.1016/j.mseb.2013.03.013

    Article  CAS  Google Scholar 

  24. D.C. Sinclair, Bol. Soc. Esp. Cerem. Vidrio. 34, 55–65 (1995)

    CAS  Google Scholar 

  25. C. Raveendiran, P. Prabukanthan, J. Madhavan, P.A. Vivekanand, N. Arumugam, A.I. Almansour, R.S. Kumar, S.I. Alaqeel, K. Perumal, Green Process. Synth. 11(1), 1148–62 (2023). https://doi.org/10.1515/gps-2022-0097

    Article  CAS  Google Scholar 

  26. S.K. Patra, B.K. Dadhich, B. Bhushan, R.K. Choubey, A. Priyam, ACS Omega 6(46), 31375–31383 (2021). https://doi.org/10.1021/acsomega.1c05449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N. Balamurugapandian et al., ECS J. Solid State Sci. Technol. 13, 043002 (2024). https://doi.org/10.1149/2162-8777/ad37d7

    Article  Google Scholar 

  28. S. Lavanya, N. Dege, E.B. Poyraz, K. Senthilkannan, J. Mater. Sci.: Mater. Electron. 35, 315 (2024). https://doi.org/10.1007/s10854-024-12054-0

    Article  CAS  Google Scholar 

  29. M. Meena, K. SenthilKannan, V. Swarnalatha, J. Mater. Sci. Mater. Electron. 35, 688 (2024). https://doi.org/10.1007/s10854-024-12438-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank St.Joseph’s College for the studies and IITM for crystal data and Phoenix Institute for electronic studies; Prof. Dr. S.A.M. Dhas, Sacred Heart College, for CDG sample’s pressurized provison; Dr Renganathan M of IIT-M for helping with Dr PB for pure sample’s sensor data analyzing.

Funding

No funding from any source and for processing.

Author information

Authors and Affiliations

Authors

Contributions

Padmanabhan.B—Photoconductivity, electronic, photonic work and sensor work. Yokeswaran.V—UV studies, electrical write-up. SenthilKannan.K*- synthesis, shocked impact and over all write-up and submission. Swarnalatha V—fluorescence, SEM work.

Corresponding author

Correspondence to K. SenthilKannan.

Ethics declarations

Conflict of interest

All authors shared their own cost and no conflict among authors for the content and in financial way.

Ethical approval

The paper is not submitted priorly or simultaneously to anywhere and no part is presented or published and is the new / novel crystal data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanaban, B., Yokeswaran, V., SenthilKannan, K. et al. Growth, investigation of calcium D-gluconate monohydrate-CDG crystals with shocked impact for electronic usage and the pure crystal for sensor application. J Mater Sci: Mater Electron 35, 832 (2024). https://doi.org/10.1007/s10854-024-12579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12579-4

Navigation