Skip to main content
Log in

Investigation of photoluminescence and thermoluminescence properties of UV& γ irradiated Li4SrCa(SiO4)2:Dy3+ phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Dy3+-activated Li4SrCa(SiO4)2 phosphors were synthesized using a high-temperature solid-state reaction method. The crystal structure, surface morphology, elemental analysis and vibrational modes of synthesized phosphor were studied using X-ray Diffraction, Scanning electron microscope, Energy dispersive X-ray spectroscopy and Raman Spectroscopy technique, respectively. Luminescence properties of Li4SrCa(SiO4)2:Dy3+ phosphors were analyzed by photoluminescence (PL) and thermoluminescence (TL) techniques. Photoluminescence spectra of Dy3+ doped Li4SrCa(SiO4)2 phosphors were efficiently excited in the range of 300–400 nm and exhibited two emission peaks, positioned at 481 nm (blue) and 575 (yellow) due to 4F9/26H15/2 and 4F9/26H13/2 transitions, respectively, under excitation wavelength of 348 nm. CIE colour coordinate (x = 0.2983, y = 0.3151), Colour purity (13.3%), and CCT (7550 K) of the material were calculated which indicated that the prepared phosphor can be used as a white light-emitting phosphor. The TL glow curves of the synthesized phosphor were recorded using a Nucleonix 1009I TLD reader. All synthesized Li4SrCa(SiO4)2:4mol%Dy3+ phosphors were exposed to UV rays (254 nm) and γ-rays (60Co source). Maximum TL intensity was found for 40 min under UV irradiation (254 nm), and for γ irradiation (dose rate 8 kGy). Trapping parameters like activation energy, frequency factor and order of kinetics were calculated by Chen’s peak shape method. The activation energy vs. Tstop method verifies the existence of overlapping peaks. In this work the long-lasting glow characteristics of prepared samples using fading measurements, and along with the TL emission spectrum were also investigated. Overall Li4SrCa(SiO4)2:Dy3+ phosphor revealed that the prepared phosphor can be used for excellent WLED phosphor and TLD material for both UV & γ based TL dosimetric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The authors states that analysed and relevant data of synthesized materials, which are including and described in the manuscript will be freely available to researchers and scientists who are working purpose of research and social welfare.

References

  1. M. Keskin, Turemiş, M. Katı, S. Gültekin, Y. Tuncer Arslanlar, A. Çetin, R. Kibar, Detailed luminescence (RL, PL, CL, TL) behaviors of Tb3+ and Dy3+ doped LiMgPO4 synthesized by sol-gel method. J. Lumin. 225, 117276 (2020). https://doi.org/10.1016/j.jlumin.2020.117276

    Article  CAS  Google Scholar 

  2. A.M. Bhake, Y.R. Parauha, S.J. Dhoble, Synthesis and photoluminescence study of Ce3+ ion-activated na pyrophosphate phosphors. J. Mater. Sci. Mater. Electron. 31, 548–559 (2019). https://doi.org/10.1007/s10854-019-02559-4

    Article  CAS  Google Scholar 

  3. G.B. Nair, H.C. Swart, S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog Mater. Sci. 109, 100622 (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  CAS  Google Scholar 

  4. Y.R. Parauha, V. Sahu, S.J. Dhoble, Prospective of combustion method for preparation of nanomaterials: a challenge. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 267, 115054 (2021). https://doi.org/10.1016/j.mseb.2021.115054

    Article  CAS  Google Scholar 

  5. Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A.L. Antaris, J. Yuan, R. Cui, H. Wan, Y. Zhou, W. Wang, N.F. Huang, J. Luo, Z. Hu, H. Dai, Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 1–7 (2017). https://doi.org/10.1038/s41467-017-00917-6

    Article  CAS  Google Scholar 

  6. R.A. Talewar, S. Mahamuda, A.S. Rao, V.M. Gaikwad, P.D. Belsare, S.V. Moharil, Broadband excited Nd3+ NIR emission in Sr5(PO4)3Cl:Eu2+ Nd3+ phosphor for solar spectral modification. J. Lumin. 222, 117118 (2020). https://doi.org/10.1016/j.jlumin

    Article  CAS  Google Scholar 

  7. J. Liang, L. Sun, G. Annadurai, B. Devakumar, S. Wang, Q. Sun, J. Qiao, H. Guo, B. Li, X. Huang, Synthesis and photoluminescence characteristics of high color purity Ba3Y4O9:Eu3+ red-emitting phosphors with excellent thermal stability for warm W- LED application. RSC Adv. 8, 32111–32118 (2018). https://doi.org/10.1039/c8ra06129g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Malysa, A. Meijerink, T. Jüstel, Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La). J. Lumin. 202, 523–531 (2018). https://doi.org/10.1016/j.jlumin.2018.05.076

    Article  CAS  Google Scholar 

  9. C.M. Mehare, Y.R. Parauha, N.S. Dhoble, C. Ghanty, S.J. Dhoble, Synthesis of novel Eu2+ activated K3Ca2(SO4)3F down-conversion phosphor for near UV excited white light emitting diode. J. Mol. Struct. 1212, 127957 (2020). https://doi.org/10.1016/j.molstruc.2020.127957

    Article  CAS  Google Scholar 

  10. P. Du, L. Luo, W. Li, F. Yan, G. Xing, Multi-site occupancies and photoluminescence characteristics in developed Eu2+ -activated Ba5SiO4Cl6 bifunctional platform: towards manufacturable optical thermometer and indoor illumination. J. Alloys Compd. 826, 154233 (2020). https://doi.org/10.1016/j.jallcom.2020.154233

    Article  CAS  Google Scholar 

  11. X. Huang, Solid-state lighting: Red Phosphor converts white LEDs. Nat. Photonics. 8, 748–749 (2014). https://doi.org/10.1038/nphoton.2014.221

    Article  CAS  Google Scholar 

  12. S. Abe, J.J. Joos, L.I.D.J. Martin, Z. Hens, P.F. Smet, Hybrid remote quantum dot/powder phosphor designs for display backlights. Light Sci. Appl. 6(6), 16271 (2017). https://doi.org/10.1038/lsa.2016.271

    Article  CAS  Google Scholar 

  13. Y. Wei, G. Xing, K. Liu, G. Li, P. Dang, S. Liang, M. Liu, Z. Cheng, D. Jin, J. Lin, New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light Sci. Appl. 8, 1–9 (2019). https://doi.org/10.1038/s41377-019-0126-1

    Article  CAS  Google Scholar 

  14. T. Luo, Y. Du, Z. Qiu, Y. Li, X. Wang, W. Zhou, J. Zhang, L. Yu, S. Lian, Remarkably enhancing Green-Excitation Efficiency for Solar Energy Utilization: Red Phosphors Ba2ZnS3:Eu2+, X- co-doped Halide ions (X = cl, br, I). Inorg. Chem. 56, 5720–5727 (2017). https://doi.org/10.1021/acs.inorgchem.7b00335

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wei, L. Cao, L. Lv, G. Li, J. Hao, J. Gao, C. Su, C.C. Lin, H.S. Jang, P. Dang, J. Lin, Highly efficient Blue Emission and Superior Thermal Stability of BaAl12O19:Eu2+ phosphors based on highly symmetric crystal structure. Chem. Mater. 30, 2389–2399 (2018). https://doi.org/10.1021/acs.chemmater.8b00464

    Article  CAS  Google Scholar 

  16. P.C. Ricci, Assessment of crystalline materials for solid state lighting applications: beyond the rare earth elements. Cryst. (Basel). 10, 1–16 (2020). https://doi.org/10.3390/cryst10070559

    Article  CAS  Google Scholar 

  17. S. Liao, X. Ji, Y. Liu, J. Zhang, Highly Efficient and Thermally Stable Blue-Green (Ba0.8Eu0.2O)(Al2O3)4.575×(1 + x) Phosphor through Structural Modification. ACS Appl. Mater. Interfaces. 10, 39064–39073 (2018). https://doi.org/10.1021/acsami.8b14816

    Article  CAS  PubMed  Google Scholar 

  18. X. Wang, Y. Cao, Q. Wei, X. Liu, X. Liao, Z. Zhao, Y. Shi, Y. Wang, Insights into a novel garnet-based yellowish-green phosphor: structure, luminescence properties and application for warm white light-emitting diodes. Cryst. Eng. Comm. 21, 6100–6108 (2019). https://doi.org/10.1039/c9ce01163c

    Article  CAS  Google Scholar 

  19. Y.R. Parauha, S.J. Dhoble, Thermoluminescence study and evaluation of trapping parameter of rare earth activated Ca3Al2O6: RE (RE = Eu2+,Ce3+) phosphors. J. Mol. Struct. 1211, 127993 (2020). https://doi.org/10.1016/j.molstruc.2020.127993

    Article  CAS  Google Scholar 

  20. N. Baig, N.S. Dhoble, Y.R. Parauha, M. Joshi, S.J. Dhoble, Thermoluminescence properties and evaluation of trapping parameters of Eu3+ and Dy3+ activated K3Ca2(SO4)3Cl phosphors. Radiat. Eff. Defects Solids. 176, 845–859 (2021). https://doi.org/10.1080/10420150.2021.1966631

    Article  CAS  Google Scholar 

  21. C. Malik, R.K. Meena, P. Rathi, B. Singh, A. Pandey, Effect of dopant concentration on luminescence properties of a phosphor KCaPO4: Dy. Radiat. Phys. Chem. 168, 108561 (2020). https://doi.org/10.1016/j.radphyschem.2019.108561

    Article  CAS  Google Scholar 

  22. I. Pekgözlü, E. Erdoʇmuş, M. Yilmaz, Synthesis and photoluminescence properties of Li4SrCa(SiO4)2: M (M: Pb2+and Bi3+). J. Lumin. 161, 160–163 (2015). https://doi.org/10.1016/j.jlumin.2015.01.009

    Article  CAS  Google Scholar 

  23. X.M. Zhang, W.L. Li, H.J. Seo, Luminescence and energy transfer in Eu2+, Mn2+ co-doped Li4SrCa(SiO4)2 for white light-emitting-diodes. Phys. Lett. A 373, 3486–3489 (2009). https://doi.org/10.1016/j.physleta.2009.07.052

    Article  CAS  Google Scholar 

  24. S. Liao, W. Zhang, J. Zhang, Site-sensitive energy transfer from Ce3+ to Tb3+ /Mn2+ based on an efficient phosphor Li4SrCa(SiO4)2:Ce3+. Ceram. Int. 44, 18413–18419 (2018). https://doi.org/10.1016/j.ceramint.2018.07.058

    Article  CAS  Google Scholar 

  25. R. Shi, X. Huang, T. Liu, L. Lin, C. Liu, Y. Huang, L. Zheng, L. Ning, H. Liang, Optical properties of Ce-Doped Li4SrCa(SiO4)2: a combined experimental and theoretical study. Inorg. Chem. 57, 1116–1124 (2018). https://doi.org/10.1021/acs.inorgchem.7b02561

    Article  CAS  PubMed  Google Scholar 

  26. S. Sharma, N. Brahme, D.P. Bisen, P. Dewangan, Cool white light emission from Dy 3 + activated alkaline alumino silicate phosphors. Opt. Express. 26, 29495 (2018). https://doi.org/10.1364/oe.26.029495

    Article  CAS  PubMed  Google Scholar 

  27. Z. Wang, Y. Li, X. Liu, X. Wei, Y. Chen, F. Zhou, Y. Wang, Photoluminescence performance of thulium doped Li4SrCa(SiO4)2 under irradiation of ultraviolet and vacuum ultraviolet lights. Mater. Res. Bull. 59, 295–299 (2014). https://doi.org/10.1016/j.materresbull.2014.07.043

    Article  CAS  Google Scholar 

  28. H. Fujimori, H. Komatsu, K. Ioku, S. Goto, M. Yoshimura, Anharmonic lattice mode of (formula presented): Ultraviolet laser Raman spectroscopy at high temperatures. Phys. Rev. B 66, 1–5 (2002). https://doi.org/10.1103/PhysRevB.66.064306

    Article  CAS  Google Scholar 

  29. M. Poletto, A.J. Zattera, Materials produced from plant biomass. Part III: degradation kinetics and hydrogen bonding in lignin. Mater. Res. 16, 1065–1070 (2013). https://doi.org/10.1590/S1516-14392013005000112

    Article  CAS  Google Scholar 

  30. J. Hong, S.J. Heo, P. Singh, Water mediated growth of oriented single crystalline SrCO3 nanorod arrays on strontium compounds. Sci. Rep. 11, 3368 (2021). https://doi.org/10.1038/s41598-021-82651-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Chandrawanshi, D.P. Bisen, N. Brahme, G. Banjare, T. Richhariya, Y. Patle, Photoluminescence and comparative thermoluminescence studies of UV/γ-irradiated Dy3+ doped bismuth silicate phosphor. J. Mater. Sci. Mater. Electron. 31, 14454–14465 (2020). https://doi.org/10.1007/s10854-020-04005-2

    Article  CAS  Google Scholar 

  32. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, A. Choubey, Y. Patle, E. Chandrawanshi, Synthesis and optical characterization of Dy3+ doped barium alumino silicate phosphor. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 273, 115445 (2021). https://doi.org/10.1016/j.mseb.2021.115445

    Article  CAS  Google Scholar 

  33. A.N. Yerpude, C.M. Nandanwar, R.L. Kohale, N.S. Kokode, S.J. Dhoble, Synthesis and photoluminescence characteristics of Ba2Ca(PO4)4:Dy3+ phosphors for n-UV based solid-state lighting. Mater. Letters: X. 18, 100196 (2023). https://doi.org/10.1016/j.mlblux.2023.100196

    Article  CAS  Google Scholar 

  34. A. Verma, D.P. Bisen, N. Brahme, I.P. Sahu, A.K. Singh, Yttrium aluminum garnet based novel and advanced phosphor synthesized by combustion route activate by Dy, Eu, and Tb rare earth metals. J. Mater. Sci. Mater. Electron. 34, 644 (2023). https://doi.org/10.1007/s10854-023-10022-8

    Article  CAS  Google Scholar 

  35. Y. Patle, N. Brahme, D.P. Bisen, T. Richhariya, E. Chandrawanshi, A. Choubey, M. Tiwari, Study of Photoluminescence, Thermoluminescence, and Afterglow properties of Dy3+ doped Ba2ZnSi2O7 phosphor. Optik. 226, 165896 (2021). https://doi.org/10.1016/j.ijleo.2020.165896

    Article  CAS  Google Scholar 

  36. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, Fracto- mechanoluminescence and thermoluminescence properties of orange-red emitting Eu3+ doped Ca2Al2SiO7 phosphors. J. Lumin. 183, 89–96 (2017). https://doi.org/10.1016/j.jlumin.2016.11.012

    Article  CAS  Google Scholar 

  37. Y.R. Parauha, S.J. Dhoble, Synthesis and luminescence characterization of Eu3+ doped Ca7Mg2(PO4)6 phosphor for eco-friendly white light-emitting diodes and thermoluminescence dosimetric applications. Luminescence. 36, 1837–1846 (2021). https://doi.org/10.1002/bio.3900

    Article  CAS  PubMed  Google Scholar 

  38. T. Rivera, Thermoluminescence in medical dosimetry. Appl. Radiat. Isot. 71, 30–34 (2012). https://doi.org/10.1016/j.apradiso.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  39. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, K. Tiwari, E. Chandrawanshi, Analysis of thermoluminescence glow curve and evaluation of trapping parameters of cerium activated M2Al2SiO7 (M = ca and Sr) phosphor for TLD application. Mater. Chem. Phys. 287, 126273 (2022). https://doi.org/10.1016/j.matchemphys.2022.126273

    Article  CAS  Google Scholar 

  40. R. Paikaray, T. Badapanda, H. Mohapatra, T. Richhariya, S.N. Tripathy, Investigation of structural, photoluminescence, and thermoluminescence properties of Praseodymium doped CaWO4 phosphor. Mater. Today Commun. 31, 103802 (2022). https://doi.org/10.1016/j.mtcomm.2022.103802

    Article  CAS  Google Scholar 

  41. S. Chand, R. Mehra, V. Chopra, Recent advancements in calcium-based phosphate materials for luminescence applications. J. Lumin. 252, 119383 (2022). https://doi.org/10.1016/j.jlumin.2022.119383

    Article  CAS  Google Scholar 

  42. M.S.A. Fadzil, N.M. Noor, N. Tamchek, N.M. Ung, N. Abdullah, M.T. Dolah, D.A. Bradley, A cross-validation study of Ge-doped silica optical fibres and TLD-100 systems for high energy photon dosimetry audit under non-reference conditions. Radiat. Phys. Chem. 200, 110232 (2022). https://doi.org/10.1016/j.radphyschem.2022.110232

    Article  CAS  Google Scholar 

  43. P. Kaur, A. Kaur, S. Singh, L. Singh, Investigation on structural and thermoluminescence properties of Ho3+ doped SrB4O7 phosphor for dosimetry applications. J. Mol. Struct. 1248, 131500 (2022). https://doi.org/10.1016/j.molstruc.2021.131500

    Article  CAS  Google Scholar 

  44. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, K. Tiwari, A. Jain, Investigation of photoluminescence, thermoluminescence, and energy transfer mechanism in Ce/Dy co-doped Sr2Al2SiO7. Mater. Sci. Semicond. Process. 159, 107396 (2023). https://doi.org/10.1016/j.mssp.2023.107396

    Article  CAS  Google Scholar 

  45. A.J.J. Bos, Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials. 10, 1357 (2017). https://doi.org/10.3390/ma10121357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S.K. Sao, N. Brahme, D.P. Bisen, G. Tiwari, S.J. Dhoble, Mechanoluminescence, thermoluminescence and photoluminescence studies of UV/γ-irradiated Ba2MgSi2O7:Dy3+ phosphors. J. Lumin. 180, 306–314 (2016). https://doi.org/10.1016/j.jlumin.2016.08.052

    Article  CAS  Google Scholar 

  47. M.D. Mehare, C.M. Mehare, N.S. Dhoble, S.J. Dhoble, Study of thermoluminescence and trapping parameter evaluation of K3Ca2(SO4)3F: Mn2+ phosphor in perspective of TLD application. Radiat. Eff. Defects Solids. 176, 817–832 (2021). https://doi.org/10.1080/10420150.2021.1961258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the DST Promotion of University Research and Scientific Excellence (PURSE) Grant Letter No. SR/PURSE/-2022/145.

Funding

This work is funded by the DST Promotion of University Research and Scientific Excellence (PURSE) Grant Letter No. SR/PURSE/-2022/145.

Author information

Authors and Affiliations

Authors

Contributions

DS: Conceptualization, investigation, designed the whole research, synthesized all the samples, and collected experimental data, Data plotting, writing original draft. AK and DPB: Manuscript editing and formatting, thoroughly analysis and proposed good suggestions. NM, CB, KT, and AS: Review the articles and performed formal analysis.

Corresponding author

Correspondence to Dipti Sahu.

Ethics declarations

Competing interest

The authors state that they have no known competing financial or personal interests that could have seemed to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D., Verma, A., Bisen, D. et al. Investigation of photoluminescence and thermoluminescence properties of UV& γ irradiated Li4SrCa(SiO4)2:Dy3+ phosphor. J Mater Sci: Mater Electron 35, 527 (2024). https://doi.org/10.1007/s10854-024-12287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12287-z

Navigation