Skip to main content
Log in

Low-fired Li3Mg2NbO6 microwave dielectric ceramics by adding LMBCS glass for LTCC application

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low temperature co-fired ceramics (LTCC) technology is extensively utilized to meet the requirements of device integration and miniaturization. Low-fired Li3Mg2NbO6 ceramics doped with xwt% Li2O–MgO–B2O3–CaF2–SiO2 glass (LMBCS, x = 0.5, 1.0, 1.5, 2.0) were prepared by the solid-state reaction method for applications in microwave communication materials. All samples exhibited a single-phase Li3Mg2NbO6 structure. The addition of LMBCS glass effectively reduced the sintering temperature of Li3Mg2NbO6 ceramics from 1250 °C to 875 °C. And adding LMBCS glass improved the Q × f value of Li3Mg2NbO6 ceramics. The Li3Mg2NbO6-1.0wt% LMBCS ceramics exhibited outstanding microwave dielectric properties: εr = 16.8, Q × f = 89,495 GHz, τf = − 27.4 ppm/°C at 875 °C, which indicates that this ceramic is potential candidate materials for LTCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Declaration.

References

  1. Xiong Y, Xing Z, Weng J et al (2021) Low-temperature sintering, dielectric performance, and far-IR reflectivity spectrum of a lightweight NaCaVO4 with good chemical compatibility with silver. Ceram Int 47:22219–22224. https://doi.org/10.1016/j.ceramint.2021.04.096

    Article  CAS  Google Scholar 

  2. Reaney IM, Iddles D (2006) Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89:2063–2072. https://doi.org/10.1111/j.1551-2916.2006.01025.x

    Article  CAS  Google Scholar 

  3. Chowdhury MZ, Shahjalal MD, Ahmed S et al (2020) 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J Comm Soc 1:957–975. https://doi.org/10.1109/OJCOMS.2020.3010270

    Article  Google Scholar 

  4. Bian W, Lu X, Wang Y et al (2020) Correlations between structure and microwave dielectric properties of Co doped MgMoO4 ceramics. Ceram Int 46:22024–22029. https://doi.org/10.1016/j.ceramint.2020.05.187

    Article  CAS  Google Scholar 

  5. Zhang X, Jiang Z, Tang B et al (2020) A new series of low-loss multicomponent oxide microwave dielectrics with a rock salt structure: Li5MgABO8 (A = Ti, Sn; B = Nb, Ta). Ceram Int 46:10332–10340. https://doi.org/10.1016/j.ceramint.2020.01.029

    Article  CAS  Google Scholar 

  6. Subodh G, Sebastian MT (2007) Microwave dielectric properties of Sr2Ce2–Ti5O16 ceramics. Mater Sci Eng B 136:50–55. https://doi.org/10.1016/j.mseb.2006.09.015

    Article  CAS  Google Scholar 

  7. Ren H, Dang M, Wang H et al (2018) Sintering behavior and microwave dielectric properties of B2O3–La2O3–MgO–TiO2 based glass-ceramic for LTCC applications. Mater Lett 210:113–116. https://doi.org/10.1016/j.matlet.2017.09.004

    Article  CAS  Google Scholar 

  8. Huang C, Hsieh Y, Ling C et al (2023) Synthesis and characterization of phase pure and Mg-modified AgZnVO4 microwave dielectrics for high-frequency ULTCC applications. J Alloys Compd 949:169890. https://doi.org/10.1016/j.jallcom.2023.169890

    Article  CAS  Google Scholar 

  9. Li Y, Hsu T, Huang C (2023) Effect of Mn: Mg ratio on sintering behavior and microwave dielectric properties of (Mn, Mg)V2O6 ceramics at ultra-low sintering temperature. J Eur Ceram Soc 43:4060–4065. https://doi.org/10.1016/j.jeurceramsoc.2023.03.022

    Article  CAS  Google Scholar 

  10. Ren H, Hao L, Peng H et al (2018) Investigation on low-temperature sinterable behavior and tunable dielectric properties of BLMT glass-Li2ZnTi3O8 composite ceramics. J Eur Ceram Soc 38:3498–3504. https://doi.org/10.1016/j.jeurceramsoc.2018.03.053

    Article  CAS  Google Scholar 

  11. Lu X, Zheng Y, Dong Z et al (2014) Low temperature sintering and microwave dielectric properties of 06 Li2ZnTi3O8–0.4Li2TiO3 ceramics doped with ZnO–B2O3–SiO2 glass. Mater Lett 131:1–4. https://doi.org/10.1016/j.matlet.2014.05.169

    Article  CAS  Google Scholar 

  12. Ren H, Jiang S, Dang M et al (2018) Investigating on sintering mechanism and adjustable dielectric properties of BLMT glass/Li2Zn3Ti4O12 composites for LTCC applications. J Alloys Compd 740:1188–1196. https://doi.org/10.1016/j.jallcom.2018.01.111

    Article  CAS  Google Scholar 

  13. Yuan LL, Bian JJ (2009) Microwave dielectric properties of the lithium containing compounds with rock salt structure. Ferroelectrics 387:123–129. https://doi.org/10.1080/00150190902966610

    Article  CAS  Google Scholar 

  14. Zhang P, Zhao X, Zhao Y (2016) Effects of MBS addition on the low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics. J Mater Sci-Mater El 27:6395–6398. https://doi.org/10.1007/s10854-016-4575-5

    Article  CAS  Google Scholar 

  15. Qian Y, Zhang Q, Tang X et al (2021) Sintering characteristics and microwave dielectric properties of low-temperature-fired (1–x)Li3Mg2NbO6-xLi2WO4 ceramics. J Mater Sci Mater Electron 32:22450–22458. https://doi.org/10.1007/s10854-021-06731-7

    Article  CAS  Google Scholar 

  16. Zhang T, Zuo R (2014) Effect of Li2O-V2O5 addition on the sintering behavior and microwave dielectric properties of Li3(Mg1-xZnx)2NbO6 ceramics. Ceram Int 40:15677–15684. https://doi.org/10.1016/j.ceramint.2014.07.090

    Article  CAS  Google Scholar 

  17. Wang G, Zhang H, Liu C et al (2018) Low-temperature sintering Li3Mg1.8Ca0.2NbO6 microwave dielectric ceramics with LMZBS glass. J Elect Mater 47:4672–4677. https://doi.org/10.1007/s11664-018-6354-y

    Article  CAS  Google Scholar 

  18. Zhang P, Xie H, Zhao Y et al (2017) Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics doped with Li2O–B2O3–SiO2 glass. J Alloys Compd 690:688–691. https://doi.org/10.1016/j.jallcom.2016.08.048

    Article  CAS  Google Scholar 

  19. Zhou X, Ning X, Zhang X et al (2020) Influence of Li2O–MgO–ZnO–B2O3–SiO2 glass doping on the microwave dielectric properties and sintering temperature of Li3Mg2NbO6 ceramics. J Mater Sci-Mater El 31:17029–17035. https://doi.org/10.1007/s10854-020-04260-3

    Article  CAS  Google Scholar 

  20. Benziada-Taı̈bi L, Kermoun H (1999) Structural and nonlinear dielectric properties in fluoride containing SrTiO3 or BaTiO3 ceramics. J Fluorine Chem 96:25–29. https://doi.org/10.1016/S0022-1139(98)00330-3

    Article  Google Scholar 

  21. Pollet M, Maranel S (2003) Low temperature sintering of CaZrO3 using lithium fluoride addition. J Eur Ceram Soc 23:1925–1933. https://doi.org/10.1016/S0955-2219(03)00013-X

    Article  CAS  Google Scholar 

  22. Xu N, Zhou J, Yang H et al (2014) Structural evolution and microwave dielectric properties of MgO–LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram Int 40:15191–15198. https://doi.org/10.1016/j.ceramint.2014.06.134

    Article  CAS  Google Scholar 

  23. Zhang J, Yue Z, Zhang X et al (2015) Low-temperature sintering and microwave dielectric properties of CaF2-doped MgTiO3 ceramics. Ceram Int 41:S515–S519. https://doi.org/10.1016/j.ceramint.2015.03.299

    Article  CAS  Google Scholar 

  24. Zhai S, Liu P, Fu Z et al (2019) The temperature stable Li2Mg3TiO6 microwave dielectric ceramics with CaF2 addition. J Mater Sci-Mater El 30:5404–5409. https://doi.org/10.1007/s10854-019-00833-z

    Article  CAS  Google Scholar 

  25. Xia W, Li L, Zhang P et al (2011) Effects of CaF2 addition on sintering behavior and microwave dielectric properties of ZnTa2O6 ceramics. Mater Lett 65:3317–3319. https://doi.org/10.1016/j.matlet.2011.07.044

    Article  CAS  Google Scholar 

  26. Fu Z, Chen X, Zhang Y et al (2022) Enhanced temperature stability of Mg2TiO4-based ceramics by LCB additive. J Ceram Int 48:36638–36643. https://doi.org/10.1016/j.ceramint.2022.08.223

    Article  CAS  Google Scholar 

  27. Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366. https://doi.org/10.1063/1.353856

    Article  CAS  Google Scholar 

  28. Lai Y, Su H, Wang G et al (2019) Low-temperature sintering of microwave ceramics with high Qf values through LiF addition. J Amer Ceram Soc 102:1893–1903. https://doi.org/10.1111/jace.16086

    Article  CAS  Google Scholar 

  29. Ma J, Fu Z, Liu P et al (2016) Microwave dielectric properties of low-fired Li2TiO3–MgO ceramics for LTCC applications. Mater Sci Eng B Solid State Mater Adv Technol 204:15–19. https://doi.org/10.1016/j.mseb.2015.10.007

    Article  CAS  Google Scholar 

  30. Huang Y, Liu C, Liu K et al (2023) Sintering behavior and microwave dielectric properties of LMZBS glass doped Li3Mg4NbO8 ceramics for LTCC applications. J Mater Sci-Mater El 34:2247. https://doi.org/10.1007/s10854-023-11619-9

    Article  CAS  Google Scholar 

  31. Bijumon PV, Sebastian MT (2005) Influence of glass additives on the microwave dielectric properties of Ca5Nb2TiO12 ceramics. Mater Sci Eng B 123:31–40. https://doi.org/10.1016/j.mseb.2005.06.011

    Article  CAS  Google Scholar 

  32. Xing C, Bi J, Wu H (2017) Effect of co-substitution on microwave dielectric properties of Li3(Mg1–xCox)2NbO6(0.00 ≤ x ≤ 0.10) ceramics. J Alloy Compd 719:58–62. https://doi.org/10.1016/j.jallcom.2017.05.139

    Article  CAS  Google Scholar 

  33. Fang L, Tang Y, Chu D et al (2012) Effect of B2O3 addition on the microstructure and microwave dielectric properties of Li2CoTi3O8 ceramics. J Mater Sci Mater Electron 23:478–483. https://doi.org/10.1007/s10854-011-0421-y

    Article  CAS  Google Scholar 

  34. Wang G, Zhang H, Huang X et al (2018) Correlations between the structural characteristics and enhanced microwave dielectric properties of V-modified Li3Mg2NbO6 ceramics. Ceram Int 44:19295–19300. https://doi.org/10.1016/j.ceramint.2018.07.156

    Article  CAS  Google Scholar 

  35. Wang G, Zhang H, Liu C et al (2018) Low temperature sintering and microwave dielectric properties of novel temperature stable Li3Mg2NbO6–0.1TiO2 ceramics. Mater Lett 217:48–51. https://doi.org/10.1016/j.matlet.2018.01.049

    Article  CAS  Google Scholar 

  36. Wang G, Zhang D, Lai Y et al (2019) Ultralow loss and temperature stability of Li3Mg2NbO6-xLiF ceramics with low sintering temperature. J Alloys Compd 782:370–374. https://doi.org/10.1016/j.jallcom.2018.12.185

    Article  CAS  Google Scholar 

  37. Wang W, Liu C, Shi L et al (2019) Effects of Li2O–B2O3–SiO2–CaO–Al2O3 glass addition on the sintering behavior and microwave dielectric properties of Li3Mg2 NbO6 ceramics. Appl Phys A 125:1–8. https://doi.org/10.1007/s00339-019-2894-0

    Article  CAS  Google Scholar 

  38. Zhang P, Liu L, Zhao Y et al (2017) Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics for LTCC application. J Mater Sci Mater Electron 2017(28):5802–5806. https://doi.org/10.1007/s10854-016-6251-1

    Article  CAS  Google Scholar 

  39. Zhang P, Liao J, Zhao Y et al (2017) Effects of B2O3 addition on the sintering behavior and microwave dielectric properties of Li3Mg2NbO6 ceramics. J Mater Sci Mater Electron 28:686–690. https://doi.org/10.1007/s10854-016-5575-1

    Article  CAS  Google Scholar 

  40. Zhang T, Zuo R, Zhang C (2015) Preparation and microwave dielectric properties of Li3(Mg0.92Zn0.08)2NbO6-Ba3(VO4)2 composite ceramics for LTCC applications. Mater Res Bull 68:109–114. https://doi.org/10.1016/j.materresbull.2015.03.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received for the research reported in the article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by JRX, ZFF and QC. The first draft of the manuscript was written by JRX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhifen Fu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Fu, Z., Cheng, Q. et al. Low-fired Li3Mg2NbO6 microwave dielectric ceramics by adding LMBCS glass for LTCC application. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10239-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10239-w

Navigation