Skip to main content
Log in

Crystal structure and magnetic properties of the Y2.97Gd0.03Fe5−xLaxO12 compound: an experimental and theoretical investigation

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, we have investigated the crystal structure and magnetic properties of the Y2.97Gd0.03Fe5−xLaxO12 (Gd-La co-doped YIG) compound (0.00 ≤ x ≤ 0.05) obtained by the citrate sol–gel method. Rietveld refinement of the X-ray diffraction patterns provided the lattice parameter (a) values, which increased from 12.387(2) to 12.468(2) Å as the La3+ content increased. Raman measurements confirmed the single-phase formation, whereas transmission electron microscopy (TEM) revealed elongated and irregular particles. The Mössbauer spectroscopy confirmed the presence of Fe3+ and Fe2+ cations and the coexistence of Fe2+ and La3+ cations in the octahedral and tetrahedral sites. Nonetheless, using a phenomenological model, it was suggested that the Fe2+ and La3+ ions tend to occupy preferentially the octahedral sites in the YIG structure. Further, the correspondence between the experimental and theoretically predicted saturation magnetization values indicated that the compound stoichiometry can be described by the chemical formula Y3+2.97Gd3+0.03Fe3+5−xyLa3+xFe2+yO2−12−y/2. Magnetic parameters such as saturation magnetization, anisotropy constant, remanent magnetization, and coercive field values were computed and discussed as a function of cations distribution in the YIG crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ketsko VA, Beresnev EN, Kopeva MA et al (2010) Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4)x(MgFe2O4)1–x system. Russian J Inorg Chem 55:427–429. https://doi.org/10.1134/S0036023610030216

    Article  CAS  Google Scholar 

  2. Vinnik DA, Zhivulin VE, Sherstyuk DP et al (2021) Ni substitution effect on the structure, magnetization, resistivity, and permeability of zinc ferrites. J Mater Chem C Mater 9:5425–5436. https://doi.org/10.1039/D0TC05692H

    Article  CAS  Google Scholar 

  3. Vinnik DA, Zhivulin VE, Sherstyuk DP et al (2021) Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater Today Chem 20:100460. https://doi.org/10.1016/j.mtchem.2021.100460

    Article  CAS  Google Scholar 

  4. Almessiere MA, Slimani Y, Güngüneş H et al (2019) Magnetic Attributes of NiFe2O4 nanoparticles: influence of dysprosium Ions (Dy3+) substitution. Nanomaterials 9:820. https://doi.org/10.3390/nano9060820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almessiere MA, Slimani Y, Trukhanov AV et al (2020) Strong correlation between Dy3+ concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. J Ind Eng Chem 90:251–259. https://doi.org/10.1016/j.jiec.2020.07.020

    Article  CAS  Google Scholar 

  6. Slimani Y, Unal B, Almessiere MA et al (2020) Investigation of structural and physical properties of Eu3+ ions substituted Ni04Cu02Zn04Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results Phys 17:103061. https://doi.org/10.1016/j.rinp.2020.103061

    Article  Google Scholar 

  7. Trukhanov AV, Astapovich KA, Turchenko VA et al (2020) Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. J Alloys Compd 841:155667. https://doi.org/10.1016/j.jallcom.2020.155667

    Article  CAS  Google Scholar 

  8. Almessiere MA, Slimani Y, Güngüneş H et al (2020) Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram Int 46:11124–11131. https://doi.org/10.1016/j.ceramint.2020.01.132

    Article  CAS  Google Scholar 

  9. Almessiere MA, Trukhanov AV, Khan FA et al (2020) Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceram Int 46:7346–7354. https://doi.org/10.1016/j.ceramint.2019.11.230

    Article  CAS  Google Scholar 

  10. Dukenbayev K, Korolkov IV, Tishkevich DI et al (2019) Fe3O4 Nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 9:494. https://doi.org/10.3390/nano9040494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ban J, Xu H, Cao G et al (2023) Synergistic effects of phase transition and electron-spin regulation on the electrocatalysis performance of ternary nitride. Adv Funct Mater 33:2300623. https://doi.org/10.1002/adfm.202300623

    Article  CAS  Google Scholar 

  12. Ren Y, Yao H, Hu J et al (2020) Evolution of “Spinodal decomposition”-like structures during the oxidation of Zr(Fe, Nb)2 under subcritical environment. Scr Mater 187:107–112. https://doi.org/10.1016/j.scriptamat.2020.06.018

    Article  CAS  Google Scholar 

  13. Cao G, Yang L, Yuan G et al (2020) Chemical diversity of iron species and structure evolution during the oxidation of C14 Laves phase Zr(Fe, Nb)2 in subcritical environment. Corros Sci 162:108218. https://doi.org/10.1016/j.corsci.2019.108218

    Article  CAS  Google Scholar 

  14. Ban J, Wen X, Xu H et al (2021) Dual evolution in defect and morphology of single-atom dispersed carbon based oxygen electrocatalyst. Adv Funct Mater 31:2010472. https://doi.org/10.1002/adfm.202010472

    Article  CAS  Google Scholar 

  15. Mariño-Castellanos P, Guerrero F, Romaguera-Barcelay Y et al (2021) Effect of La3+ cation solubility on the structural, magnetic and electrical properties of barium hexaferrite. Ceram Int 47:8236–8247. https://doi.org/10.1016/j.ceramint.2020.11.183

    Article  CAS  Google Scholar 

  16. Cabrera-Baez M, Padrón-Hernández E, Soares JM et al (2021) Effect of yttrium substitution in Fe-doped ZnO nanoparticles: an EPR study. J Magn Magn Mater 538:168317. https://doi.org/10.1016/j.jmmm.2021.168317

    Article  CAS  Google Scholar 

  17. Ikesue A, Aung YL, Yasuhara R, Iwamoto Y (2020) Giant Faraday rotation in heavily ce-doped YIG bulk ceramics. J Eur Ceram Soc 40:6073–6078. https://doi.org/10.1016/j.jeurceramsoc.2020.05.062

    Article  CAS  Google Scholar 

  18. Khalifeh MR, Shokrollahi H, Arab SM, Yang H (2020) The role of Dy incorporation in the magnetic behavior and structural characterization of synthetic Ce, Bi-substituted yttrium iron garnet. Mater Chem Phys 247:122838. https://doi.org/10.1016/j.matchemphys.2020.122838

    Article  CAS  Google Scholar 

  19. Gonçalves M, Matilla-Arias J, Araujo FP et al (2022) Investigation of structural, optical and magnetic properties of Y3-xCexFe5-yEryO12 compound. Phys B Condens Matter 644:414231. https://doi.org/10.1016/j.physb.2022.414231

    Article  CAS  Google Scholar 

  20. Kheirdoust H, Niyaifar M, Hasanpour A et al (2022) Magnetic and structural characteristic of Gd-YIG. Solid State Commun 351:114793. https://doi.org/10.1016/j.ssc.2022.114793

    Article  CAS  Google Scholar 

  21. Asakereh Raad N, Shokrollahi H, Basavad M, Arab SM (2020) Magnetic performance and structural evaluation of La, Ce, Bi-substituted yttrium iron garnets. Ceram Int 46:21551–21559. https://doi.org/10.1016/j.ceramint.2020.05.258

    Article  CAS  Google Scholar 

  22. Lau ZY, Lee KC, Soleimani H, Beh HG (2019) Experimental study of electromagnetic-assisted rare-earth doped yttrium iron garnet (YIG) nanofluids on wettability and interfacial tension alteration. Energies (Basel) 12:3806. https://doi.org/10.3390/en12203806

    Article  CAS  Google Scholar 

  23. Guerra Y, Leal L, Cabrera-Baez M et al (2023) Cation distribution, Fe2+/Fe3+ valence states and oxygen vacancies detection in the Y2.98Er0.02Fe5−yCryO12 compound. J Alloys Compd 960:170607. https://doi.org/10.1016/j.jallcom.2023.170607

    Article  CAS  Google Scholar 

  24. Leal L, Matilla-Arias J, Guerra Y et al (2022) Oxidation states and occupation sites of Fe and Cu ions in the Y3Fe5−xCuxO12, (0.00 ≤ x ≤ 0.05) compound synthesized via sol gel method. J Alloys Compd 915:165417. https://doi.org/10.1016/j.jallcom.2022.165417

    Article  CAS  Google Scholar 

  25. Caland JP, Medrano CPC, Caytuero A et al (2020) Preferential site occupancy of Ni ions and oxidation state of Fe ions in the YIG crystal structure obtained by sol-gel method. J Alloys Compd 849:156657. https://doi.org/10.1016/j.jallcom.2020.156657

    Article  CAS  Google Scholar 

  26. Akhtar MN, Tamam N, Makhdoom S et al (2023) Development and synergistic effects of magnetodielectric Dy-Gd co-doped YIG nanoferrites based meta-absorber for improved absorption applications. J Alloys Compd 966:171472. https://doi.org/10.1016/j.jallcom.2023.171472

    Article  CAS  Google Scholar 

  27. Noureddine S, Srour A, Lakys Y et al (2023) Effect of gadolinium and manganese on the physical properties of yttrium iron garnet. Phys B Condens Matter 668:415200. https://doi.org/10.1016/j.physb.2023.415200

    Article  CAS  Google Scholar 

  28. Fernández A, Araujo FP, Guerra Y et al (2024) Synthesis of coral-like structures of Pr–Yb co-doped YIG: structural, optical, magnetic and antimicrobial properties. J Rare Earths 42:543–554. https://doi.org/10.1016/j.jre.2023.03.006

    Article  CAS  Google Scholar 

  29. Alves C, Matilla-Arias J, Guerrero F et al (2023) Influence of Fe3+ by La3+ cations substitution on the crystallography and magnetic properties of yttrium iron garnet compound. Ceram Int 49:27567–27576. https://doi.org/10.1016/j.ceramint.2023.06.032

    Article  CAS  Google Scholar 

  30. Sousa WJ, Viana BC, Soares JM et al (2023) Magnetic properties as a function of temperature of La and Gd co-doped YIG nanoparticles. Results Phys 53:107004. https://doi.org/10.1016/j.rinp.2023.107004

    Article  Google Scholar 

  31. Peña-Garcia R, Guerra Y, Castro-Lopes S et al (2021) Morphological, magnetic and EPR studies of ZnO nanostructures doped and co-doped with Ni and Sr. Ceram Int 47:28714–28722. https://doi.org/10.1016/j.ceramint.2021.07.030

    Article  CAS  Google Scholar 

  32. Soares AS, Castro-Lopes S, Cabrera-Baez M et al (2022) The role of pH on the vibrational, optical and electronic properties of the Zn Fe O compound synthesized via sol gel method. Solid State Sci 128:106880. https://doi.org/10.1016/j.solidstatesciences.2022.106880

    Article  CAS  Google Scholar 

  33. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  34. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  35. Peña-Garcia R, Guerra Y, Santos FEP et al (2019) Structural and magnetic properties of Ni-doped yttrium iron garnet nanopowders. J Magn Magn Mater 492:165650. https://doi.org/10.1016/j.jmmm.2019.165650

    Article  CAS  Google Scholar 

  36. Leal LRF, Milani R, Oliveira DM et al (2020) Competitive effect of dopants on magnetic and structural properties in yttrium iron garnet co-doped with Er and Cr. Ceram Int 46:18584–18591. https://doi.org/10.1016/j.ceramint.2020.04.165

    Article  CAS  Google Scholar 

  37. Leal LRF, Guerra Y, Padrón-Hernández E et al (2019) Structural and magnetic properties of yttrium iron garnet nanoparticles doped with copper obtained by sol gel method. Mater Lett 236:547–549. https://doi.org/10.1016/j.matlet.2018.11.004

    Article  CAS  Google Scholar 

  38. Peña-Garcia R, Guerra Y, Buitrago DM et al (2018) Synthesis and characterization of yttrium iron garnet nanoparticles doped with cobalt. Ceram Int 44:11314–11319. https://doi.org/10.1016/j.ceramint.2018.03.179

    Article  CAS  Google Scholar 

  39. Wojdyr M (2010) Fityk : a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. https://doi.org/10.1107/S0021889810030499

    Article  CAS  Google Scholar 

  40. Jin L, Wang Y, Lu G et al (2019) Temperature dependence of spin-wave modes and Gilbert damping in lanthanum-doped yttrium-iron-garnet films. AIP Adv 9:025301. https://doi.org/10.1063/1.5085922

    Article  CAS  Google Scholar 

  41. Sharma V, Kuanr BK (2018) Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. J Alloys Compd 748:591–600. https://doi.org/10.1016/j.jallcom.2018.03.086

    Article  CAS  Google Scholar 

  42. Lataifeh MS, Mahmood S, Thomas MF (2002) Mössbauer spectroscopy study of substituted rare-earth iron garnets at low temperature. Phys B Condens Matter 321:143–148. https://doi.org/10.1016/S0921-4526(02)00840-2

    Article  CAS  Google Scholar 

  43. Lee YB, Chae KP, Lee SH (2001) Mössbauer study of substituted YIG, Y-Gd–Fe–In–O system. J Phys Chem Solids 62:1335–1340. https://doi.org/10.1016/S0022-3697(01)00031-2

    Article  CAS  Google Scholar 

  44. Devi EC, Soibam I (2019) Magnetic properties and law of approach to saturation in Mn-Ni mixed nanoferrites. J Alloys Compd 772:920–924. https://doi.org/10.1016/j.jallcom.2018.09.160

    Article  CAS  Google Scholar 

  45. Matilla-Arias J, Guerra Y, Mariño-Castellanos PA (2022) Theoretical investigation of cation distribution and their effect on the physical properties of Ni-doped YIG system. Appl Phys A 128:1087. https://doi.org/10.1007/s00339-022-06236-y

    Article  CAS  Google Scholar 

  46. Cullity BD, Graham CD (2008) Introduction to magnetic materials. Wiley, Hoboken

    Book  Google Scholar 

  47. Rudowicz C (1983) Magnetocrystalline anisotropy of 3d6 and 3d4 ions at triclinic. Symmetry sites application to Fe2+ Ions in YIG: Me4+ (Me = Si, Ge). Zeitschrift für Naturforschung A 38:540–554. https://doi.org/10.1515/zna-1983-0510

    Article  Google Scholar 

  48. Manuilov SA, Khartsev SI, Grishin AM (2009) Pulsed laser deposited Y3Fe5O12 films: nature of magnetic anisotropy I. J Appl Phys 106:123917. https://doi.org/10.1063/1.3272731

    Article  CAS  Google Scholar 

  49. Coey JMD (2001) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), (CNPq N 4/2021-Bolsa de Produtividade em Pesquisa-PQ, 307659/2021-6), (Chamada CNPq/MCTI/FNDCT N o 18/2021-Faixa A, 407796/2021-5); Financiadora de Estudos e Projetos (FINEP) and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) (APQ-0635- 3.03/21-Jovens Pesquisadores).

Author information

Authors and Affiliations

Authors

Contributions

M. Gonçalves, J. Matilla-Arias, J. Penha-Caland, C. Vilca-Huayhua, J. A. H. Coaquira contributed to the conceptualization; data curation; investigation; methodology; visualization; and writing of the original draft. Bartolomeu C. Viana and Ramón R. Peña-Garcia contributed to conceptualization; formal analysis; funding acquisition; investigation; methodology; project administration; resources; supervision; validation; visualization; writing original draft; writing review and editing.

Corresponding author

Correspondence to Ramón R. Peña-Garcia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or personal relationships.

Ethical approval

This article does not contain any research involving humans or animals.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, M., Matilla-Arias, J., Penha-Caland, J. et al. Crystal structure and magnetic properties of the Y2.97Gd0.03Fe5−xLaxO12 compound: an experimental and theoretical investigation. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10209-2

Navigation