Skip to main content
Log in

Aluminum/SmCo5 composites for structural and magnetic applications

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal-bonded magnetic composites (MBMCs) present a promising alternative to dense sintered magnets, particularly for intricate components. Compared to polymer-based bonded magnets, MBMCs have wider applicability in harsh environments. In this paper, we demonstrate a solid-state shear-based manufacturing technique to introduce localized magnetization into a paramagnetic aluminum matrix by embedding SmCo5 permanent magnet particles. Our magnetic composites display hard magnetic behavior with a coercivity of 13 kOe and a remanent magnetization of 4.32 emu/g. In addition to magnetization, we also report a 9% improvement in Young’s modulus. Despite the local temperature rise during processing, the magnetic phases didn’t decompose into unwanted phases, preserving the composite’s hard magnetic properties. Creation of an interfacial metallurgical bond with the matrix ensured the suitability of the composites for structural applications. Our study investigates the mechanical, and functional properties of composites, paving the way for lightweight structural magnetic composites with a transformative potential in the aerospace, nuclear, and automotive applications. This work underscores the potential for further optimization and development to drive innovations in magnet and equipment design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Coey JMD (2020) Engineering 6:119–131. https://doi.org/10.1016/j.eng.2018.11.034

    Article  CAS  Google Scholar 

  2. Coey JMD, Iriyama T (2022) Modern permanent magnets. In: Ormerod J (ed) Croat J. Woodhead Publishing, Cambridge, pp 305–342

    Google Scholar 

  3. Pallapa M, Yeow JTW (2015) Smart Mater Struct 24:025007–025018. https://doi.org/10.1088/0964-1726/24/2/025007

    Article  CAS  Google Scholar 

  4. Benedyk JC (2010) Materials, design and manufacturing for lightweight vehicles. In: Mallick PK (ed) Woodhead Publishing. Cambridge, pp 79–113

    Google Scholar 

  5. Shin J, Kim T, Kim D, Kim D, Kim K (2017) J Alloy Compd 698:577–590

    Article  CAS  Google Scholar 

  6. Cui J, Roven HJ (2010) Transact Nonferrous Metals Soc China 20:2057–2063. https://doi.org/10.1016/S1003-6326(09)60417-9

    Article  CAS  Google Scholar 

  7. Luo C, Qiu X, Su J, Xu Y, Zhao X, Xing F (2021) J Manuf Processes 67:487–495. https://doi.org/10.1016/j.jmapro.2021.05.016

    Article  Google Scholar 

  8. Berbon PB, Bingel WH, Mishra RS, Bampton CC, Mahoney MW (2001) Scripta Mater 44:61–66. https://doi.org/10.1016/S1359-6462(00)00578-9

    Article  CAS  Google Scholar 

  9. Mishra RS, Ma ZY, Charit I (2003) Mater Sci Eng: A 341:307–310. https://doi.org/10.1016/S0921-5093(02)00199-5

    Article  Google Scholar 

  10. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1995) Google Patents.

  11. Rodewald W, Wall B, Katter M, Velicescu M, Schrey P (1993) J Appl Phys 73:5899–5901. https://doi.org/10.1063/1.353515

    Article  CAS  Google Scholar 

  12. Huang MQ, Zhang LY, Ma BM, Zheng Y, Elbicki JM, Wallace WE, Sankar SG (1991) J Appl Phys 70:6027–6029. https://doi.org/10.1063/1.350082

    Article  CAS  Google Scholar 

  13. Otani Y, Moukarika A, Sun H, Coey JMD, Devlin E, Harris IR (1991) J Appl Phys 69:6735–6737. https://doi.org/10.1063/1.348900

    Article  CAS  Google Scholar 

  14. Kelhar L, Zavašnik J, McGuiness P, Kobe S (2016) J Magn Magn Mater 419:171–175. https://doi.org/10.1016/j.jmmm.2016.06.035

    Article  CAS  Google Scholar 

  15. Brett RL, Rowlinson N, Ashraf MM, Harris IR, Bowen P (1990) J Appl Phys 67:4622–4624. https://doi.org/10.1063/1.344832

    Article  CAS  Google Scholar 

  16. Chuang S-F, Lee S-L, Lin F-J, Lin J-C (2006) Powder Metall 49:328–333. https://doi.org/10.1179/174329006x128322

    Article  CAS  Google Scholar 

  17. Ashrafi N, Ariff AHM, Sarraf M, Sulaiman S, Hong TS (2021) Mater Chem Phys 258:123895–123908. https://doi.org/10.1016/j.matchemphys.2020.123895

    Article  CAS  Google Scholar 

  18. Maleki A, Taherizadeh AR, Issa HK, Niroumand B, Allafchian AR, Ghaei A (2018) Ceram Int 44:15079–15085. https://doi.org/10.1016/j.ceramint.2018.05.141

    Article  CAS  Google Scholar 

  19. Elsayd A, Shash AY, Mattar H, Löthman PA, Mitwally ME (2023) Heliyon 9:e16887–e16897. https://doi.org/10.1016/j.heliyon.2023.e16887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borgohain C, Acharyya K, Sarma S, Senapati KK, Sarma KC, Phukan P (2013) J Mater Sci 48:162–171. https://doi.org/10.1007/s10853-012-6724-4

    Article  CAS  Google Scholar 

  21. Mahmoud ERI, Tash MM (2016) Materials 9:505–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bailey G, Orefice M, Sprecher B, Önal MAR, Herraiz E, Dewulf W, Van Acker K (2021) J Clean Prod 286:125294–125302. https://doi.org/10.1016/j.jclepro.2020.125294

    Article  CAS  Google Scholar 

  23. Samin AJ (2018) J Nucl Mater 503:42–55. https://doi.org/10.1016/j.jnucmat.2018.02.029

    Article  CAS  Google Scholar 

  24. Luo H, Sheng H, Zhang H, Wang F, Fan J, Du J, Ping Liu J, Szlufarska I (2019) Nat Commun 10:3587–3594. https://doi.org/10.1038/s41467-019-11505-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Z, Zhao H, Luo H, Liu L, Ding Y, Zhang X, Yao X, Zhang J (2022) Mater Today Commun 31:103676–103683. https://doi.org/10.1016/j.mtcomm.2022.103676

    Article  CAS  Google Scholar 

  26. Cui B, Liu X, King AH, Ouyang G, Nlebedim CI, Cui J (2020) Acta Mater 196:528–538. https://doi.org/10.1016/j.actamat.2020.06.058

    Article  CAS  Google Scholar 

  27. Gursoy D, De Carlo F, Xiao X, Jacobsen C (2014) J Synchrotron Radiat 21:1188–1193. https://doi.org/10.1107/S1600577514013939

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oliver WC, Pharr GM (1992) J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  29. P.J.H. W.J. Arbegast, In: Proceedings of the fifth international conference on trends in welding research, (Pine Mountain, GA, USA, June 1–5, 1998).

  30. Escobar J, Gwalani B, Olszta M, Silverstein J, Ajantiwalay T, Overman N, Fu W, Li Y, Bergmann L, Maawad E, Klusemann B, dos Santos JF, Devaraj A (2022) J Alloy Compd 928:167007–167015. https://doi.org/10.1016/j.jallcom.2022.167007

    Article  CAS  Google Scholar 

  31. Cavaliere P (2005) Compos Part A: Appl Sci Manuf 36:1657–1665. https://doi.org/10.1016/j.compositesa.2005.03.016

    Article  CAS  Google Scholar 

  32. Malakar A, Suresh KS, Pancholi V, Brokmeier H-G, Schell N (2020) Mater Charact 167:110525–110535. https://doi.org/10.1016/j.matchar.2020.110525

    Article  CAS  Google Scholar 

  33. Fonda RW, Bingert JF (2007) Scripta Mater 57:1052–1055. https://doi.org/10.1016/j.scriptamat.2007.06.068

    Article  CAS  Google Scholar 

  34. Escobar J, Silverstein J, Ishrak F, Li L, Soulami A, Li S, Yu A, Mathaudhu S, Ortiz A, Koch C, Devaraj A, Efe M, Gwalani B (2023) Mater Sci Eng: A 886:145715. https://doi.org/10.1016/j.msea.2023.145715

    Article  CAS  Google Scholar 

  35. Sarkari Khorrami M, Saito N, Miyashita Y, Kondo M (2019) Mater Sci Eng: A 744:349–364. https://doi.org/10.1016/j.msea.2018.12.1

    Article  CAS  Google Scholar 

  36. Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A (2009) Mater Sci Eng: A 500:84–91. https://doi.org/10.1016/j.msea.2008.09.064

    Article  CAS  Google Scholar 

  37. Chen CH, Knutson SJ, Shen Y, Wheeler RA, Horwath JC, Barnes PN (2011) Appl Phys Lett 99:(012504-1)-(012504-3). https://doi.org/10.1063/1.3607958

    Article  CAS  Google Scholar 

  38. I. Alloys International, "Aluminum 1100", https://alloysintl.com/inventory/aluminum-alloys-supplier/aluminum-1100/. Accessed 04/04 2024.

  39. Singh RK, Kamat SV, Mathur RP (2015) J Magn Magn Mater 379:300–304. https://doi.org/10.1016/j.jmmm.2014.12.016

    Article  CAS  Google Scholar 

  40. Ajay Kumar P, Yadav D, Perugu CS, Kailas SV (2017) Mater Des 113:99–108. https://doi.org/10.1016/j.matdes.2016.09.101

    Article  CAS  Google Scholar 

  41. Cui GR, Ma ZY, Li SX (2009) Acta Mater 57:5718–5729. https://doi.org/10.1016/j.actamat.2009.07.065

    Article  CAS  Google Scholar 

  42. Movahedi M, Kokabi AH, Seyed Reihani SM (2011) Mater Des 32:3143–3149. https://doi.org/10.1016/j.matdes.2011.02.057

    Article  CAS  Google Scholar 

  43. Seri O, Furumata K (2002) Mater Corros 53:111–120. https://doi.org/10.1002/1521-4176(200202)53:2

    Article  CAS  Google Scholar 

  44. Stollenwerk T, Ulumuddin NZZ, Sun P-L, Lee S-H, Seehaus M, Skokov K, Gutfleisch O, Xie Z, Korte-Kerzel S (2024) Acta Mater 266:119669–119682. https://doi.org/10.1016/j.actamat.2024.119669

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is supported by ONR under grant N00014-23-1-2758 and was performed at the Center for Additive Manufacturing and Logistics (CAMAL) of North Carolina State University. The microstructural characterization was performed at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-2025064). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). The authors acknowledge the Manufacturing Technology Inc. friction stir processing facility available at the Center for Friction Stir Processing (CFSP) at the University of North Texas. The authors are very grateful to Anurag Gumaste at the University of North Texas for helping with the friction-stir experiments. ME acknowledges support from U.S. DOE, Vehicle Technologies Office, through the Powertrain Materials Core Program. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy (DOE) under contract DE-AC05-76RL01830.

Funding

Office of Naval Research Global, N00014-23-1-2758, Bharat Gwalani, National Science Foundation, ECCS-2025064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Gwalani.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest or competing interests.

Ethical approval

Not Applicable.

Supplementary information

Not Applicable.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishrak, F., Lastovich, M., Malakar, A. et al. Aluminum/SmCo5 composites for structural and magnetic applications. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10208-3

Navigation