Skip to main content

Advertisement

Log in

Enhanced cavitation erosion and electrochemical corrosion properties of additively manufactured Hastelloy C276 coating by ultrasonic shot peening

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To augment the erosion and corrosion resistance of the additively manufactured Hastelloy C276 coating, it was subjected to ultrasonic shot peening (USP) treatment. Subsequently, cavitation erosion and electrochemical corrosion experiments were conducted. This study explored the influence of USP under various parameters on cavitation erosion/corrosion behavior and erosion mechanism through microhardness testing, analysis of roughness changes, micromorphology observation, microstructure characterization, mass loss monitoring, and measurement of electrochemical parameters. The results show that with an increase in shot peening duration, the hardness of the coating increases by 37.1% due to the refinement of the surface structure, and the depth of the hardened layer reaches 206.9 μm. The mass loss rate of the USP-treated coating is reduced by 43.9% compared to the initial coating. The damage mechanism of cavitation erosion involves cavity growth and crack propagation. The surface layer of the USP-strengthened coating exhibits a smaller grain size and increased hardness, significantly enhancing its resistance to damage. Notably, the cavitation erosion behavior of Hastelloy C276 shows a preferential removal of the Mo element. USP treatment also enhances the coating’s performance in electrochemical corrosion experiments, proving to be an effective method for further enhancing the resistance of Hastelloy C276 to cavitation erosion and corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References:

  1. Gao G, Zhang Z (2022) Cavitation erosion mechanism of 2Cr13 stainless steel. Wear 488–489:204137. https://doi.org/10.1016/j.wear.2021.204137

    Article  CAS  Google Scholar 

  2. Pohl M, Stella J (2002) Quantitative CLSM roughness study on early cavitation-erosion damage. Wear 252:501–511. https://doi.org/10.1016/S0043-1648(02)00003-0

    Article  CAS  Google Scholar 

  3. Grewal HS, Agrawal A, Singh H, Arora HS (2012) Cavitation erosion studies on friction stir processed hydroturbine steel. T Indian I Metals 65:731–734. https://doi.org/10.1007/s12666-012-0197-7

    Article  Google Scholar 

  4. Grewal HS, Singh H, Agrawal A (2013) Understanding Liquid Impingement erosion behaviour of nickel–alumina based thermal spray coatings. Wear 301:424–433. https://doi.org/10.1016/j.wear.2013.01.063

    Article  CAS  Google Scholar 

  5. Hong S, Wu Y, Zhang J, Zheng Y, Qin Y, Gao W, Li G (2015) Cavitation Erosion Behavior and Mechanism of HVOF Sprayed WC-10Co-4Cr Coating in 3.5 wt% NaCl Solution. T Indian I Metals 68:151–159. https://doi.org/10.1007/s12666-014-0440-5

    Article  CAS  Google Scholar 

  6. Hong S, Wu Y, Zhang J, Zheng Y, Zheng Y, Lin J (2016) Synergistic effect of ultrasonic cavitation erosion and corrosion of WC–CoCr and FeCrSiBMn coatings prepared by HVOF spraying. Ultrason Sonochem 31:563–569. https://doi.org/10.1016/j.ultsonch.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  7. Hao E, Liu X, An Y, Zhou H, Yan F (2020) The coupling effect of immersion corrosion and cavitation erosion of NiCoCrAlYTa coatings in artificial seawater. Corros Sci 169:108635. https://doi.org/10.1016/j.corsci.2020.108635

    Article  CAS  Google Scholar 

  8. Wang CY, Cheng W, Shao YK, Luo KY, Lu JZ (2021) Cavitation erosion behaviour of AISI 420 stainless steel subjected to laser shock peening as a function of the coverage layer in distilled water and water-particle solutions. Wear 470–471:203611. https://doi.org/10.1016/j.wear.2020.203611

    Article  CAS  Google Scholar 

  9. Li Z, Han J, Lu J, Chen J (2015) Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy. J Alloy Compd 619:754–759. https://doi.org/10.1016/j.jallcom.2014.08.248

    Article  CAS  Google Scholar 

  10. Ahmad M, Akhter JI, Iqbal M, Akhtar M, Ahmed E, Shaikh MA, Saeed K (2005) Surface modification of Hastelloy C-276 by SiC addition and electron beam melting. J Nucl Mater 336:120–124. https://doi.org/10.1016/j.jnucmat.2004.09.010

    Article  CAS  Google Scholar 

  11. Zhang X, Guo S, Zhong J (2022) Microevolution of grain boundary character distribution in Hastelloy C-276 during the annealing process. J Mater Res Technol 18:1534–1541. https://doi.org/10.1016/j.jmrt.2022.03.056

    Article  CAS  Google Scholar 

  12. Chai D, Ma G, Zhou S, Jin Z, Wu D (2019) Cavitation erosion behavior of Hastelloy C-276 weld by laser welding. Wear 420–421:226–234. https://doi.org/10.1016/j.wear.2018.10.012

    Article  CAS  Google Scholar 

  13. Singh NK, Vinay G, Ang ASM, Mahajan DK, Singh H (2022) Cavitation erosion mechanisms of HVOF-sprayed Ni-based cermet coatings in 3.5% NaCl environment. Surf Coat Tech 434:128194. https://doi.org/10.1016/j.surfcoat.2022.128194

    Article  CAS  Google Scholar 

  14. Singh NK, Ang ASM, Mahajan DK, Singh H (2021) Cavitation erosion resistant nickel-based cermet coatings for monel K-500. Tribol Int 159:106954. https://doi.org/10.1016/j.triboint.2021.106954

    Article  CAS  Google Scholar 

  15. Ferreira LDS, Graf K, Scheid A (2015) Microstructure and Properties of Nickel-based C276 Alloy Coatings by PTA on AISI 316L and API 5L X70 Steel Substrates. Mater Res 18:212–221. https://doi.org/10.1590/1516-1439.332914

    Article  Google Scholar 

  16. Yin Y, Zhang J, Gao J, Zhang Z, Han Q, Zan Z (2021) Laser powder bed fusion of Ni-based Hastelloy X superalloy: microstructure, anisotropic mechanical properties and strengthening mechanisms. Mat Sci Eng A-Struct 827:142076. https://doi.org/10.1016/j.msea.2021.142076

    Article  CAS  Google Scholar 

  17. Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene′41 by laser melting deposition manufacturing. Mat Sci Eng A-Struct 527:4823–4829. https://doi.org/10.1016/j.msea.2010.04.062

    Article  CAS  Google Scholar 

  18. Debroy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  19. Volpato GM, Tetzlaff U, Fredel MC (2022) A comprehensive literature review on laser powder bed fusion of Inconel superalloys. Addit Manuf 55:102871. https://doi.org/10.1016/j.addma.2022.102871

    Article  CAS  Google Scholar 

  20. Lodhi MJK, Deen KM, Greenlee-Wacker MC, Haider W (2019) Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit Manuf 27:8–19. https://doi.org/10.1016/j.addma.2019.02.005

    Article  CAS  Google Scholar 

  21. Hashim M, Sarath Raghavendra Babu KE, Duraiselvam M, Natu H (2013) Improvement of wear resistance of Hastelloy C-276 through laser surface melting. Mater Design 46:546–551. https://doi.org/10.1016/j.matdes.2012.10.024

    Article  CAS  Google Scholar 

  22. Qiu Z, Wu B, Zhu H, Wang Z, Hellier A, Ma Y, Li H, Muransky O, Wexler D (2020) Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Mater Design 195:109007. https://doi.org/10.1016/j.matdes.2020.109007

    Article  CAS  Google Scholar 

  23. Zhang S, Liu J, Lin X, Huang Y, Wang M, Zhang Y, Qin T, Huang W (2021) Effect of electrolyte solutions on the electrochemical dissolution behavior of additively manufactured Hastelloy X superalloy via laser solid forming. J Alloy Compd 878:160395. https://doi.org/10.1016/j.jallcom.2021.160395

    Article  CAS  Google Scholar 

  24. Kwabena Adomako N, Haghdadi N, Primig S (2022) Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties. Mater Design 223:111245. https://doi.org/10.1016/j.matdes.2022.111245

    Article  CAS  Google Scholar 

  25. Qiu Z, Wang Z, Gazder AA, van Duin S, Studer A, Garbe U, Gu Q, Wu B, Zhu H, Wexler D, Li H (2023) Stabilised mechanical properties in Ni-based Hastelloy C276 alloy by additive manufacturing under different heat inputs incorporated with active interlayer temperature control. Mat Sci Eng A-Struct, Struct Mater Propert Microstruct Process 862:144434. https://doi.org/10.1016/j.msea.2022.144434

    Article  CAS  Google Scholar 

  26. Cho KT, Song K, Oh SH, Lee Y, Lim KM, Lee WB (2012) Surface hardening of aluminum alloy by shot peening treatment with Zn based ball. Mat Sci Eng A-Struct 543:44–49. https://doi.org/10.1016/j.msea.2012.02.043

    Article  CAS  Google Scholar 

  27. Chen G, Jiao Y, Tian T, Zhang X, Li Z, Zhou W (2014) Effect of wet shot peening on Ti-6Al-4V alloy treated by ceramic beads. T Nonferr Metal Soc 24:690–696. https://doi.org/10.1016/S1003-6326(14)63112-5

    Article  CAS  Google Scholar 

  28. Liu YG, Li MQ (2019) Structure response characteristics and surface nanocrystallization mechanism of alpha phase in Ti-6Al-4V subjected to high energy shot peening. J Alloy Compd 773:860–871. https://doi.org/10.1016/j.jallcom.2018.09.343

    Article  CAS  Google Scholar 

  29. Khandaker M, Riahinezhad S, Sultana F, Morris T, Knight J, Vaughan M (2016) Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Int J Nanomed. https://doi.org/10.2147/IJN.S89376

    Article  Google Scholar 

  30. Li N, Sun S, Bai H, Xu W, Xiao G, Zhang Y, Lu Y (2020) Evolution of nano/submicro-scale oxide structures on Ti6Al4V achieved by an ultrasonic shot peening-induction heating approach for high-performance surface design of bone implants. J Alloy Compd 831:154876. https://doi.org/10.1016/j.jallcom.2020.154876

    Article  CAS  Google Scholar 

  31. Sanchez AG, You C, Leering M, Glaser D, Furfari D, Fitzpatrick ME, Wharton J, Reed PAS (2021) Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651. Int J Fatigue 143:106025. https://doi.org/10.1016/j.ijfatigue.2020.106025

    Article  CAS  Google Scholar 

  32. Pan X, He W, Huang X, Wang X, Shi X, Jia W, Zhou L (2021) Plastic deformation behavior of titanium alloy by warm laser shock peening: Microstructure evolution and mechanical properties. Surf Coat Tech 405:126670. https://doi.org/10.1016/j.surfcoat.2020.126670

    Article  CAS  Google Scholar 

  33. Maleki E, Unal O, Guagliano M, Bagherifard S (2021) The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718. Mat Sci Eng A-Struct 810:141029. https://doi.org/10.1016/j.msea.2021.141029

    Article  CAS  Google Scholar 

  34. Zhang Y, Qu S, Lu F, Lai F, Ji V, Liu H, Li X (2020) Microstructures and rolling contact fatigue behaviors of 17Cr2Ni2MoVNb steel under combined ultrasonic surface rolling and shot peening. Int J Fatigue 141:105867. https://doi.org/10.1016/j.ijfatigue.2020.105867

    Article  CAS  Google Scholar 

  35. Yin F, Liu Y, Xu R, Zhao K, Partin A, Han Q (2018) Nanograined surface fabricated on the pure copper by ultrasonic shot peening and an energy-density based criterion for peening intensity quantification. J Manuf Process 32:656–663. https://doi.org/10.1016/j.jmapro.2018.04.003

    Article  Google Scholar 

  36. Chen H, Guan Y, Zhu L, Li Y, Zhai J, Lin J (2021) Effects of ultrasonic shot peening process parameters on nanocrystalline and mechanical properties of pure copper surface. Mater Chem Phys 259:124025. https://doi.org/10.1016/j.matchemphys.2020.124025

    Article  CAS  Google Scholar 

  37. Li Y, Shang X, Zhai M, Yu L, Wang L, Zhao S (2022) Surface characteristics and microstructure evolution of a nickel-base single crystal superalloy treated by ultrasonic shot peening. J Alloy Compd 919:165761. https://doi.org/10.1016/j.jallcom.2022.165761

    Article  CAS  Google Scholar 

  38. Li K, Shin K, Cao P (2018) Strain-induced phase transformation and nanocrystallization of 301 metastable stainless steel upon ultrasonic shot peening. metallurgical and materials transactions. A Metall Mater Trans A 49:4435–4440. https://doi.org/10.1007/s11661-018-4820-z

    Article  CAS  Google Scholar 

  39. Kong M, Zang T, Wang Z, Zhu L, Zheng H, Gao S, Ngwangwa HM (2023) A study on the tribological behavior of AZ31 magnesium alloy sheets processed by temperature-assisted ultrasonic shot peening. J Mater Res Technol 27:1223–1241. https://doi.org/10.1016/j.jmrt.2023.09.293

    Article  CAS  Google Scholar 

  40. Sun Q, Han Q, Xu R, Zhao K, Li J (2018) Localized corrosion behaviour of AA7150 after ultrasonic shot peening: corrosion depth vs. impact energy. Corros Sci 130:218–230. https://doi.org/10.1016/j.corsci.2017.11.008

    Article  CAS  Google Scholar 

  41. Miao HY, Larose S, Perron C, Lévesque M (2010) An analytical approach to relate shot peening parameters to Almen intensity. Surf Coat Tech 205:2055–2066. https://doi.org/10.1016/j.surfcoat.2010.08.105

    Article  CAS  Google Scholar 

  42. Mulligan CP, Wei R, Yang G, Zheng P, Deng R, Gall D (2015) Microstructure and age hardening of C276 alloy coatings. Surf Coat Tech 270:299–304. https://doi.org/10.1016/j.surfcoat.2015.02.030

    Article  CAS  Google Scholar 

  43. Kumagai M, Curd ME, Soyama H, Ungár T, Ribárik G, Withers PJ (2021) Depth-profiling of residual stress and microstructure for austenitic stainless steel surface treated by cavitation, shot and laser peening. Mat Sci Eng A-Struct 813:141037. https://doi.org/10.1016/j.msea.2021.141037

    Article  CAS  Google Scholar 

  44. Bagherifard S, Hickey DJ, Fintová S, Pastorek F, Fernandez-Pariente I, Bandini M, Webster TJ, Guagliano M (2018) Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Acta Biomater 66:93–108. https://doi.org/10.1016/j.actbio.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  45. Hassani-Gangaraj SM, Cho KS, Voigt HJL, Guagliano M, Schuh CA (2015) Experimental assessment and simulation of surface nanocrystallization by severe shot peening. Acta Mater 97:105–115. https://doi.org/10.1016/j.actamat.2015.06.054

    Article  CAS  Google Scholar 

  46. Si C, Sun W, Tian Y, Cai J (2023) Cavitation erosion resistance enhancement of the surface modified 2024T351 Al alloy by ultrasonic shot peening. Surf Coat Tech 452:129122. https://doi.org/10.1016/j.surfcoat.2022.129122

    Article  CAS  Google Scholar 

  47. Atapek ^ H, Tümer M, çelikkol E, Kısasöz A, Kerimak M Z, (2023) Microstructural, mechanical and corrosion behavior of UNS S31803/Hastelloy C-276 dissimilar metal welds. Cirp J Manuf Sci Tec 40:129–141. https://doi.org/10.1016/j.cirpj.2022.11.008

    Article  Google Scholar 

  48. Zhang Z, Zhao L, Si C, Tian Y, Xu S (2024) Microstructure development and cavitation erosion resistance enhancement of additive manufactured Hastelloy C276 alloy coating on martensitic stainless–steel via directed energy deposition. Opt Laser Technol 171:110395. https://doi.org/10.1016/j.optlastec.2023.110395

    Article  CAS  Google Scholar 

  49. Zhang S, Liu J, Lin X, Huang Y, Zhang Y, Guo P, Li J, Huang W (2021) Microstructure and anodic electrochemical behavior of additive manufactured Hastelloy X alloy via directed energy deposition. Addit Manuf 39:101824. https://doi.org/10.1016/j.addma.2020.101824

    Article  CAS  Google Scholar 

  50. Martin MH, Lasia A (2011) Influence of experimental factors on the constant phase element behavior of Pt electrodes. Electrochim Acta 56:8058–8068. https://doi.org/10.1016/j.electacta.2011.02.068

    Article  CAS  Google Scholar 

  51. Song QN, Tong Y, Xu N, Sun SY, Li HL, Bao YF, Jiang YF, Wang ZB, Qiao YX (2020) Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions. Wear 450–451:203258. https://doi.org/10.1016/j.wear.2020.203258

    Article  CAS  Google Scholar 

  52. Ganguly S, Chaubey AK, Gope R, Kushwaha A, Basu A, Gupta M (2023) Enhanced corrosion performance of ultrasonically shot peened and graphene nanoparticles reinforced squeeze-cast AZ91 magnesium alloy. J Alloy Compd 966:171203. https://doi.org/10.1016/j.jallcom.2023.171203

    Article  CAS  Google Scholar 

  53. Pour-Ali S, Tavangar R, Hejazi S (2023) Effect of micro-shot peening on microstructure and fluoride-induced corrosion performance of AISI 904L superaustenitic stainless steel. Mater Today Commun 36:106682. https://doi.org/10.1016/j.mtcomm.2023.106682

    Article  CAS  Google Scholar 

  54. Wang C, Xiong X, Yang L, Hong Y, She S, Zhang H, Liu H, Ji V, Li M (2023) Erosion-corrosion behaviour of shot peening treated nickel-aluminium bronze in simulated sand-containing seawater. Corros Sci 211:110908. https://doi.org/10.1016/j.corsci.2022.110908

    Article  CAS  Google Scholar 

  55. Zhao L, Sun H, Li S, Si C, Xu S (2023) An investigation of the effect of post heat treatment on the wear and corrosion behavior of HVOF-sprayed WC-10Co4Cr coatings. J Therm Spray Techn. https://doi.org/10.1007/s11666-023-01661-8

    Article  Google Scholar 

  56. Zhao T, Zhang S, Wang ZY, Zhang CH, Zhang DX, Wang NW, Wu CL (2022) Cavitation erosion/corrosion synergy and wear behaviors of nickel-based alloy coatings on 304 stainless steel prepared by cold metal transfer. Wear 510–511:204510. https://doi.org/10.1016/j.wear.2022.204510

    Article  CAS  Google Scholar 

  57. Noh JS, Laycock NJ, Gao W, Wells DB (2000) Effects of nitric acid passivation on the pitting resistance of 316 stainless steel. Corros Sci 42:2069–2084. https://doi.org/10.1016/S0010-938X(00)00052-4

    Article  CAS  Google Scholar 

  58. Wang Y, Hao E, An Y, Hou G, Zhao X, Zhou H (2020) The interaction mechanism of cavitation erosion and corrosion on HVOF sprayed NiCrWMoCuCBFe coating in artificial seawater. Appl Surf Sci 525:146499. https://doi.org/10.1016/j.apsusc.2020.146499

    Article  CAS  Google Scholar 

  59. Li J, Cui J, Yang J, Li Y, Qiu H, Yang J (2016) Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings. Compos Sci Technol 129:30–37. https://doi.org/10.1016/j.compscitech.2016.04.017

    Article  CAS  Google Scholar 

  60. Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MHM (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304. https://doi.org/10.1016/j.corsci.2015.11.033

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No.2023A1515011508).

Author information

Authors and Affiliations

Authors

Contributions

Ziqian Zhang contributed to formal analysis and writing—original draft. Chaorun Si contributed to project administration, and writing—review & editing. Shilin Xu contributed to conceptualization and resources. Junbiao Wang contributed to project administration.

Corresponding author

Correspondence to Chaorun Si.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Si, C., Xu, S. et al. Enhanced cavitation erosion and electrochemical corrosion properties of additively manufactured Hastelloy C276 coating by ultrasonic shot peening. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10206-5

Navigation