Skip to main content
Log in

The synergy of polyvinylidene fluoride and CuO to enhance the combustion of boron powder

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Boron (B) powder is considered to be an excellent fuel for propulsion applications due to its remarkable energy density. However, B is severely affected by boron oxide (B2O3) on its surface. To solve this problem, polyvinylidene fluoride (PVDF) and copper oxide (CuO) coatings were applied onto B particles, leveraging their synergistic effects to enhance the ignition and combustion performance (ICP) of B. Various characterization methods and CO2 laser ignition experiments were used to determine how PVDF and CuO impact B combustion. PVDF and CuO are helpful to improve the ICP of B. Especially for the (B/CuO4)@PVDF16 sample, it exhibits 28.2% higher combustion heat, 46.4% shorter ignition delay, and flame expansion rate (FER) increases from 0.091 to 0.280 m s−1 versus unmodified B. Furthermore, PVDF suppresses B powder agglomeration during combustion. The present work provides a new idea for improving the combustion of B powder.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. Yan T, Liu P, Song N, Ou Y (2023) Insight into combustion characteristics of micro- and nano-sized boron carbide. Combust Flame 251:112721. https://doi.org/10.1016/j.combustflame.2023.112721

    Article  CAS  Google Scholar 

  2. Zhu L, Zhu B, Zhao X, Wang Y, Li M, Chen J, Sun Y (2023) Using polyvinylidene fluoride to improve ignition and combustion of micron-sized boron powder by fluorination reaction. Chin J Aeronaut 36:64–76. https://doi.org/10.1016/j.cja.2023.05.001

    Article  Google Scholar 

  3. Yang D, Liu R, Li W, Yan Q (2023) Recent advances on the preparation and combustion performances of boron-based alloy fuels. Fuel 342:127855. https://doi.org/10.1016/j.fuel.2023.127855

    Article  CAS  Google Scholar 

  4. Pang W, Yetter RA, DeLuca LT, Zarko V, Gany A, Zhang X (2022) Boron-based composite energetic materials (B-CEMs): preparation, combustion and applications. Prog Energy Combust Sci 93:101038. https://doi.org/10.1016/j.pecs.2022.101038

    Article  Google Scholar 

  5. Hashim SA, Karmakar S, Roy A (2019) Effects of Ti and Mg particles on combustion characteristics of boron–HTPB-based solid fuels for hybrid gas generator in ducted rocket applications. Acta Astronaut 160:125–137. https://doi.org/10.1016/j.actaastro.2019.04.002

    Article  CAS  Google Scholar 

  6. Liu Y, Wang Y, Liu Y, Zhao B, Liu W, Yan Q, Fu X (2023) High calorific values boron powder: ignition and combustion mechanism. Surf Modific Strat Prop Mol 28:3209. https://doi.org/10.3390/molecules28073209

    Article  CAS  Google Scholar 

  7. Xu P, Liu J, Chen X, Zhang W, Zhou J, Wei X (2022) Ignition and combustion of boron particles coated by modified materials with various action mechanisms. Combust Flame 242:112208. https://doi.org/10.1016/j.combustflame.2022.112208

    Article  CAS  Google Scholar 

  8. Li C, Hu C, Deng Z, Hu X, Li Y, Wei J (2021) Dynamic ignition and combustion characteristics of agglomerated boron-magnesium particles in hot gas flow. Aerosp Sci Technol 110:106478. https://doi.org/10.1016/j.ast.2020.106478

    Article  Google Scholar 

  9. Lebedeva EA, Astaf’eva SA, Istomina TS, Badica P (2022) Combustion products agglomeration of propellant containing boron with fluorinated coatings. Combust Flame 238:111749. https://doi.org/10.1016/j.combustflame.2021.111749

    Article  CAS  Google Scholar 

  10. Liang D, Liu J, Zhou Y, Zhou J (2017) Ignition and combustion characteristics of amorphous boron and coated boron particles in oxygen jet. Combust Flame 185:292–300. https://doi.org/10.1016/j.combustflame.2017.07.030

    Article  CAS  Google Scholar 

  11. Sullivan K, Young G, Zachariah MR (2009) Enhanced reactivity of nano-B/Al/CuO MIC’s. Combust Flame 156:302–309. https://doi.org/10.1016/j.combustflame.2008.09.011

    Article  CAS  Google Scholar 

  12. Agarwal PPK, Matsoukas T (2022) Nanoenergetic materials: enhanced energy release from boron by aluminum nanoparticle addition. ACS Omega 7:26560–26565. https://doi.org/10.1021/acsomega.2c02691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan L, Zhu B, Chen J, Sun Y (2023) Study on nano-boron particles modified by PVDF to enhance the combustion characteristics. Combust Flame 248:112556. https://doi.org/10.1016/j.combustflame.2022.112556

    Article  CAS  Google Scholar 

  14. Wang H, Ren H, Yin L, Li Y, Wu X (2022) High energy release boron-based material with oxygen vacancies promoting combustion. Chem Eng J 430:133027. https://doi.org/10.1016/j.cej.2021.133027

    Article  CAS  Google Scholar 

  15. Yan L, Zhu B, Yan X, Wang W, Chen J, Liu J, Sun Y (2023) Study on combustion performance of boron powder promoted by nickel oxide. Thermochim Acta 726:179558. https://doi.org/10.1016/j.tca.2023.179558

    Article  CAS  Google Scholar 

  16. Hu Y, Wang X, Zhang J, Zhu Z, Ren X, Yang Y, Lin K, Pang A, Shuai Y (2022) Encapsulated boron-based energetic spherical composites with improved reaction efficiency and combustion performance. Chem Eng J 433:134478. https://doi.org/10.1016/j.cej.2021.134478

    Article  CAS  Google Scholar 

  17. Huang S, Deng S, Jiang Y, Zheng X (2019) Experimental effective metal oxides to enhance boron combustion. Combust Flame 205:278–285. https://doi.org/10.1016/j.combustflame.2019.04.018

    Article  CAS  Google Scholar 

  18. Liu T, Chen X, Han A, Ye M, Zhang S (2016) Preparation and properties of boron-based nano-B/CuO thermite. Kne Mater Sci 1:95–102. https://doi.org/10.18502/kms.v1i1.569

    Article  Google Scholar 

  19. Wang D, Liu J, Tan T, Liu S, Xu G, Zhang Z, Qin Y, Li F (2023) Dual-core–shell structure B@LiF@AP with multi-effect synergies to improve processibility and energy release characteristics of B. J Mater Chem A 11:1351–1360. https://doi.org/10.1039/d2ta08298e

    Article  CAS  Google Scholar 

  20. Qin Y, Yu H, Wang D, Song Y, Li F, Liu J (2023) Preparation and characterization of energetic composite films with mutual reactions based on B/PVDF mosaic structure. Chem Eng J 451:138792. https://doi.org/10.1016/j.cej.2022.138792

    Article  CAS  Google Scholar 

  21. Wang J, Mao Y, Chen J, Li Z, Wang J, Nie F (2022) Surface engineering boron/graphite fluoride composite with enhanced ignition and combustion performances. Fuel 323:124374. https://doi.org/10.1016/j.fuel.2022.124374

    Article  CAS  Google Scholar 

  22. Xu Y, Cui Q, Zhao C (2020) Liquid phase in-situ synthesis of LiF coated boron powder composite and performance study. Def Technol 16:635–641. https://doi.org/10.1016/j.dt.2019.08.016

    Article  Google Scholar 

  23. Han L, Wang R, Chen W, Wang Z, Zhu X, Huang T (2023) Preparation and combustion mechanism of boron-based high-energy fuels. Catalysts 13:378. https://doi.org/10.3390/catal13020378

    Article  CAS  Google Scholar 

  24. Keerthi V, Nie H, Pisharath S, Hng HH (2020) Combustion characteristics of fluoropolymer coated boron powders. Combust Sci Technol 194:1183–1198. https://doi.org/10.1080/00102202.2020.1804885

    Article  CAS  Google Scholar 

  25. Lyu J, Chen S, He W, Zhang X, Tang D, Liu P, Yan Q (2019) Fabrication of high-performance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning. Chem Eng J 368:129–137. https://doi.org/10.1016/j.cej.2019.02.170

    Article  CAS  Google Scholar 

  26. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membrane Sci 375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  27. Ji J, Xu H, Li H, Zhang X, Ke X, Ma X, Guo X, Zhou X (2024) Novel hydrophobic Ti-PVDF energetic thin films with excellent mechanical and ignition properties and their reaction mechanisms. Combust Flame 260:113223. https://doi.org/10.1016/j.combustflame.2023.113223

    Article  CAS  Google Scholar 

  28. Li H, Liang D, Liu J (2020) Nano-carbides as accelerants for boron oxidation reaction. J Therm Anal Calorim 144:721–728. https://doi.org/10.1007/s10973-020-09561-7

    Article  CAS  Google Scholar 

  29. Ao W, Wen Z, Liu L, Wang Y, Zhang Y, Liu P, Qin Z, Li LKB (2022) Combustion and agglomeration characteristics of aluminized propellants containing Al/CuO/PVDF metastable intermolecular composites: a highly adjustable functional catalyst. Combust Flame 241:112110. https://doi.org/10.1016/j.combustflame.2022.112110

    Article  CAS  Google Scholar 

  30. Young G, Roberts CW, Stoltz CA (2015) Ignition and combustion enhancement of boron with polytetrafluoroethylene. J Propul Power 31:386–392. https://doi.org/10.2514/1.B35390

    Article  Google Scholar 

  31. Ulas A, Kuo KK, Gotzmer C (2001) Ignition and combustion of boron particles in fluorine-containing environments. Combust Flame 127:1935–1957. https://doi.org/10.1016/S0010-2180(01)00299-1

    Article  CAS  Google Scholar 

  32. Wang J, Chen J, Mao Y, Zhang X, Wang J, Nie F (2024) Synergistic reaction of spherical B/Al/PTFE fuel prepared by confinement-emulsion-templated strategy to achieve high energy and reactivity. Combust Flame 259:113113. https://doi.org/10.1016/j.combustflame.2023.113113

    Article  CAS  Google Scholar 

  33. Xi J, Liu J, Wang Y, Liang D, Zhou J (2014) Effect of metal hydrides on the burning characteristics of boron. Thermochim Acta 597:58–64. https://doi.org/10.1016/j.tca.2014.10.017

    Article  CAS  Google Scholar 

  34. Spalding MJ, Krier H, Burton RL (2000) Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O2 and Ar/N2/O2 mixtures. Combust Flame 120:200–210. https://doi.org/10.1016/S0010-2180(99)00082-6

    Article  CAS  Google Scholar 

  35. Liang D, Xiao R, Liu J, Wang Y (2019) Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend. Aerosp Sci Technol 84:1081–1091. https://doi.org/10.1016/j.ast.2018.11.046

    Article  Google Scholar 

  36. Liu T, Luh SP (1991) Effect of boron particle surface coating on combustion of solid propellants for ducted rockets. Propell Explos Pyrot 16:156–166. https://doi.org/10.1002/prep.19910160403

    Article  CAS  Google Scholar 

  37. Campbell LL, Hill KJ, Smith DK, Pantoya ML (2020) Thermal analysis of microscale aluminum particles coated with perfluorotetradecanoic (PFTD) acid. J Therm Anal Calorim 145:289–296. https://doi.org/10.1007/s10973-020-09742-4

    Article  CAS  Google Scholar 

  38. Yun L, Wang Y, Zhu B, Sun Y (2023) Oxidation and combustion studies of polyacrylamide constructed high energy aluminum-based reactive fuel. Combust Flame 251:112580. https://doi.org/10.1016/j.combustflame.2022.112580

    Article  CAS  Google Scholar 

  39. Zhang H, Li J, Zhang S, Zhu Y, Chen S, Yu X, Ma S, Xu K (2024) Construction of boron-based double-layer core-shell structure composites and their combustion energy release characteristics. Fuel 371:132157. https://doi.org/10.1016/j.fuel.2024.132157

    Article  CAS  Google Scholar 

  40. Xie P, Liao X, Liu J (2024) Ignition and combustion characteristics of aluminum-based fluorine-containing composite powder. Thermochim Acta 736:179757. https://doi.org/10.1016/j.tca.2024.179757

    Article  CAS  Google Scholar 

  41. Duan L, Xia Z, Chen B, Feng Y, Ma L (2022) Ignition and combustion characteristics of boron agglomerates under different oxygen concentrations. Acta Astronaut 197:81–90. https://doi.org/10.1016/j.actaastro.2022.05.020

    Article  CAS  Google Scholar 

  42. Ao W, Liu P, Liu H, Wu S, Tao B, Huang X, Li LKB (2020) Tuning the agglomeration and combustion characteristics of aluminized propellants via a new functionalized fluoropolymer. Chem Eng J 382:122987. https://doi.org/10.1016/j.cej.2019.122987

    Article  CAS  Google Scholar 

  43. Yuan J, Liu J, Zhang L, Xu P, Chen D, Yang W (2021) Combustion and agglomeration characteristics of boron particles in boron-containing fuel-rich propellant. Combust Flame 232:111551. https://doi.org/10.1016/j.combustflame.2021.111551

    Article  CAS  Google Scholar 

  44. Xiao F, Chen C, Chen Z, Hu J (2023) In situ precise construction of surface-activated boron powders: a new strategy to synergistically improve the interface properties and enhance combustion performance of boron. Fuel 351:128995. https://doi.org/10.1016/j.fuel.2023.128995

    Article  CAS  Google Scholar 

  45. Zhou Y, Wang Y, Zhang Z, Li F, Cheng J, Ye Y, Xu J, Shen R (2023) Low air pressure self-sustaining combustion performances of 3D direct writing Al/CuO film. Chem Eng J 473:145031. https://doi.org/10.1016/j.cej.2023.145031

    Article  CAS  Google Scholar 

  46. Chintersingh K, Nguyen Q, Schoenitz M, Dreizin EL (2016) Combustion of boron particles in products of an air–acetylene flame. Combust Flame 172:194–205. https://doi.org/10.1016/j.combustflame.2016.07.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support provided by the National Natural Science Foundation of China (No. 52376093) and the Qing Lan Project of Jiangsu Province (2023).

Author information

Authors and Affiliations

Authors

Contributions

Naiqiang Huang contributed to data curation, formal analysis, investigation, writing—original draft & revised. Baozhong Zhu contributed to resources, project administration, funding acquisition. Tianyu Yang contributed to formal analysis and investigation. Jiuyu Chen contributed to resources and investigation. Yunlan Sun contributed to resources, project administration, funding acquisition, and writing—review & editing.

Corresponding author

Correspondence to Yunlan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Compliance with ethical standards.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, N., Zhu, B., Yang, T. et al. The synergy of polyvinylidene fluoride and CuO to enhance the combustion of boron powder. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10203-8

Navigation