Skip to main content

Advertisement

Log in

Apoptosis induced by cationic liposome based on the mitochondrial signaling pathway in vitro

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Liposomes have been extensively applied in gene and drug delivery. It is indicated in many studies that cationic lipids possess a certain degree of cytotoxicity, primarily induced by the lipid head group. In this study, we investigated the cytotoxic mechanisms of peptide headgroup lipid (CDO14) and quaternary ammonium salt headgroup lipid (CDA14) on the NCI-H460 and MRC-5 cell lines. Both lipids were synthesized in our laboratory and with high transfection efficiency. The differences in changes of relevant proteins during the process of inducing cell apoptosis were compared at the cellular level between the two lipids. The results showed that both types of liposomes could lead to an increase in intracellular reactive oxygen species, a decrease in ATP content, a decrease in mitochondrial membrane potential, an increase in cytochrome c content, an increase in the BAX/BCL-2 ratio, and an increase in cleaved caspase-3 content. Among these changes, the variations in CDA14 were more significant than those in CDO14. Additionally, the cellular uptake of CDA14 was significantly higher than that of CDO14. These results suggested that the cytotoxicity of quaternary ammonium salt-based lipids was higher than that of peptide-based lipids. The cytotoxicity of cationic lipids is related to their head group structure, and their cytotoxic effect is mainly achieved by activating caspase-dependent endogenous apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ma K, Mi CL, Cao XX, Wang TY (2021) Progress of cationic gene delivery reagents for non-viral vector. Appl Microbiol Biotechnol 105:525

    Article  PubMed  Google Scholar 

  2. Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S (2018) A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 253:117

    Article  PubMed  CAS  Google Scholar 

  3. Butt MH, Zaman M, Ahmad A, Khan R, Mallhi TH, Hasan MM, Khan YH, Hafeez S et al (2022) Appraisal for the potential of viral and nonviral vectors in gene therapy: a review. Genes (Basel) 13(8):1370

    Article  PubMed  CAS  Google Scholar 

  4. Grijalvo S, Puras G, Zarate J, Sainz-Ramos M, Qtaish NAL, Lopez T, Mashal M, Attia N et al (2019) Cationic niosomes as non-viral vehicles for nucleic acids: challenges and opportunities in gene delivery. Pharmaceutics 11(2):50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang Y, Gao S, Ye WH, Yoon HS, Yang YY (2006) Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5:791

    Article  PubMed  CAS  Google Scholar 

  6. Zhang C, Zhao Y, Zhang E, Jiang M, Zhi D, Chen H, Cui S, Zhen Y et al (2020) Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv 27:1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ewert KK, Scodeller P, Simon-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR (2021) Cationic liposomes as vectors for nucleic acid and hydrophobic drug therapeutics. Pharmaceutics 13(9):1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhi D, Zhang S, Wang B, Zhao Y, Yang B, Yu S (2010) Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjug Chem 21:563

    Article  PubMed  CAS  Google Scholar 

  9. Ma W, Fu X, Zhao T, Qi Y, Zhang S, Zhao Y (2024) Development and applications of lipid hydrophilic headgroups for nucleic acid therapy. Biotechnol Adv 74:108395

    Article  PubMed  CAS  Google Scholar 

  10. Liu C, Zhang L, Zhu W, Guo R, Sun H, Chen X, Deng N (2020) Barriers and strategies of cationic liposomes for cancer gene therapy. Mol Ther Methods Clin Dev 18:751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Park H, Otte A, Park K (2022) Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release 342:53

    Article  PubMed  CAS  Google Scholar 

  12. Knudsen KB, Northeved H, Kumar PE, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM et al (2015) In vivo toxicity of cationic micelles and liposomes. Nanomedicine 11:467

    Article  PubMed  CAS  Google Scholar 

  13. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17:521

    Article  PubMed  CAS  Google Scholar 

  14. Wu Y, Xiong Y, Wang L, Zhou Q, Li L, Levkin PA, Davidson G, Gao L et al (2020) Development of new self-assembled cationic amino liposomes for efficient gene delivery. Biomater Sci 8:3021

    Article  PubMed  CAS  Google Scholar 

  15. Wu Y, Li L, Chen Q, Su Y, Levkin PA, Davidson G (2016) Single-tailed lipidoids enhance the transfection activity of their double-tailed counterparts. ACS Comb Sci 18:43

    Article  PubMed  Google Scholar 

  16. Zhao Y, Zhang S, Zhang Y, Cui S, Chen H, Zhi D, Zhen Y, Zhang S et al (2015) Tri-peptide cationic lipids for gene delivery. J Mater Chem B 3:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mandal S, Mallik S, Bhoumick A, Bhattacharya A, Sen P (2024) Synthesis of amino acid-based cationic lipids and study of the role of the cationic head group for enhanced drug and nucleic acid delivery. ChemBioChem 25(6):e202300834

    Article  PubMed  CAS  Google Scholar 

  18. Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G (2021) Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 235:105032

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646

    Article  PubMed  CAS  Google Scholar 

  20. Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA et al (2020) Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 159:54

    Article  PubMed  Google Scholar 

  21. Poltorak A (2022) Cell death: all roads lead to mitochondria. Curr Biol 32:R891

    Article  PubMed  CAS  Google Scholar 

  22. Xiao D, He H, Huang W, Oo TL, Wang A, He LF (2018) Analysis of mitochondrial markers of programmed cell death. Methods Mol Biol 1743:65

    Article  PubMed  CAS  Google Scholar 

  23. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 97:2499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nakamura H, Takada K (2021) Reactive oxygen species in cancer: current findings and future directions. Cancer Sci 112:3945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Weinberg F, Ramnath N, Nagrath D (2019) Reactive oxygen species in the tumor microenvironment: an overview. Cancers (Basel) 11(8):1191

    Article  PubMed  CAS  Google Scholar 

  26. Yang B, Chen Y, Shi J (2019) Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 119:4881

    Article  PubMed  CAS  Google Scholar 

  27. Kalpage HA, Wan J, Morse PT, Zurek MP, Turner AA, Khobeir A, Yazdi N, Hakim L et al (2020) Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 121:105704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Soderquist RS, Crawford L, Liu E, Lu M, Agarwal A, Anderson GR, Lin KH, Winter PS et al (2018) Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat Commun 9:3513

    Article  PubMed  PubMed Central  Google Scholar 

  29. Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A (2022) Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem 69:1633

    Article  PubMed  CAS  Google Scholar 

  30. Popgeorgiev N, Gil C, Berthenet K, Bertolin G, Ichim G (2024) Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: state of the art methods and biosensors. Semin Cell Dev Biol 156:58

    Article  PubMed  CAS  Google Scholar 

  31. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50

    Article  PubMed  CAS  Google Scholar 

  32. Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21:85

    Article  PubMed  CAS  Google Scholar 

  33. Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH et al (2019) Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 33:1540

    Article  PubMed  CAS  Google Scholar 

  34. Santucci R, Sinibaldi F, Cozza P, Polticelli F, Fiorucci L (2019) Cytochrome c: an extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol 136:1237

    Article  PubMed  CAS  Google Scholar 

  35. Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M et al (2020) Apigenin as an anticancer agent. Phytother Res 34:1812

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China ( 21606041/21776044).

Author information

Authors and Affiliations

Authors

Contributions

Cui and Zhang conceived the presented idea and developed the theory, conducted the research. Du and Cui written the manuscript. Wang and Du did the main experiment. Li and Zhao and Zhi provided technical support. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Shaohui Cui or Shubiao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Ju.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1980 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Wang, Y., Li, M. et al. Apoptosis induced by cationic liposome based on the mitochondrial signaling pathway in vitro. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10192-8

Navigation