Skip to main content
Log in

An ab initio and Monte Carlo study of 3d transition metal-substituted MgBr2: a spintronics perspective

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alkaline earth halides garnered interest in spintronics research due to their longer spin relaxation time. Employing first principles calculations, 3d transition metal (TM)-substituted magnesium bromide (MgBr2) monolayers have been reported for the first time for potential spintronics applicability. Among these systems, Cr-, Cu- and Fe-substituted MgBr2 monolayers showed half-metallicity that can be used in ultra-fast spintronics because of high spin polarization. Bipolar magnetic semiconducting (BMS) nature was observed in Mn-substituted monolayer that enables spin control and manipulation by external bias voltage. The formation energy of TM dopants under Br-rich condition showed the feasibility of TM substitution. The half-metallic TM-substituted systems showed a large spin channel gap which inhibits spin leakage. The spin flip gap in BMS monolayer was feasible for practical device operation. Additionally, significant magnetic anisotropy energy per dopant has been observed with a ferromagnetic coupling in Cr-, Cu- and Fe-substituted systems, while antiferromagnetic coupling was shown by Mn- and V-substituted monolayers. Monte Carlo (MC) simulation revealed a near room temperature magnetic phase transition temperature. Robustness of the half-metallicity and BMS spin flip gap was ascertained with strain-mediated density of states which is of importance while fabrication upon a lattice mismatch between substrate. The magnetic transition temperature tuned by applied either compressive or tensile strain is also performed. Hence, electronic and magnetic studies revealed 3d TM element-substituted monolayer MgBr2 to be a potential system in spintronics applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Guo Y, Deng H, Sun X et al (2017) Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering. Adv Mater 29:1700715. https://doi.org/10.1002/adma.201700715

    Article  CAS  Google Scholar 

  2. Li X, Yang J (2016) First-principles design of spintronics materials. Natl Sci Rev 3:365–381. https://doi.org/10.1093/nsr/nww026

    Article  CAS  Google Scholar 

  3. Sethulakshmi N, Mishra A, Ajayan PM et al (2019) Magnetism in two-dimensional materials beyond graphene. Mater Today 27(107–122):22. https://doi.org/10.1016/j.mattod.2019.03.015

    Article  CAS  Google Scholar 

  4. Gong C, Li L, Li Z et al (2017) Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–269. https://doi.org/10.1038/nature22.22060

    Article  CAS  PubMed  Google Scholar 

  5. Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273. https://doi.org/10.1038/nature22.22391

    Article  CAS  PubMed  Google Scholar 

  6. Yu W, Li J, Herng TS et al (2019) Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv Mater 31:1903779. https://doi.org/10.1002/adma.201903779

    Article  CAS  Google Scholar 

  7. Tong Q, Liu F, Xiao J, Yao W (2018) Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett 18:7194–7199. https://doi.org/10.1021/acs.nanolett.8b03315

    Article  CAS  PubMed  Google Scholar 

  8. Jorio A (2022) Twistronics and the small-angle magic. Nat Mater 21:844–845. https://doi.org/10.1038/s41563-022.22-01290-6

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Sun F, Yang S et al (2016) Robust ferromagnetism in Mn-substituted MoS2 nanostructures. Appl Phys Lett 109:092401. https://doi.org/10.1063/1.4961883

    Article  CAS  Google Scholar 

  10. Li B, Xing T, Zhong M et al (2017) A two-dimensional Fe-substituted SnS2 magnetic semiconductor. Nat Commun 8:1–7. https://doi.org/10.1038/s41467-017-02077-z

    Article  CAS  Google Scholar 

  11. Tiwari S, van de Put ML, Sorée B, Vandenberghe WG (2021) Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers. npj 2D Mater Appl 5:54. https://doi.org/10.1038/s41699-021-00233-0

    Article  CAS  Google Scholar 

  12. Bhattacharyya G, Choudhuri I, Pathak B (2018) High Curie temperature and half-metallicity in an atomically thin main group-based boron phosphide system: long range ferromagnetism. Phys Chem Chem Phys 20:22877–22889. https://doi.org/10.1039/C8CP03440K

    Article  CAS  PubMed  Google Scholar 

  13. Lin SH, Kuo JL (2014) Towards the ionic limit of two-dimensional materials: monolayer alkaline earth and transition metal halides. Phys Chem Chem Phys 16:20763–20771. https://doi.org/10.1039/C4CP02048K

    Article  CAS  PubMed  Google Scholar 

  14. Sheha EM, Nasr MM, El-Mansy MK (2015) The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite. J Adv Res 6:563–569. https://doi.org/10.1016/j.jare.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  15. Salehi H, Guo Q (2004) A facile and efficient one-pot synthesis of dihydropyrimidinones catalyzed by magnesium bromide under solvent-free conditions. Synth Commun 34:171–179. https://doi.org/10.1081/SCC-120027250

    Article  CAS  Google Scholar 

  16. Fairbrother DH, Roberts JG, Rizzi S, Somorjai GA (1997) Structure of monolayer and multilayer magnesium chloride films grown on Pd(111). Langmuir 13:2090–2096. https://doi.org/10.1021/la960680c

    Article  CAS  Google Scholar 

  17. Novosad SS (1998) Scintillation characteristics of thin-film calcium iodide crystal x-ray detectors. Tech Phys 43:956–958. https://doi.org/10.1134/1.1259107

    Article  Google Scholar 

  18. Zhu J, Schwingenschlögl U (2014) Band gap opening in silicene on MgBr2 (0001) induced by Li and Na. ACS Appl Mater Interfaces 6:19242–19246. https://doi.org/10.1021/am5052697

    Article  CAS  PubMed  Google Scholar 

  19. Wan J, Lacey SD, Dai J et al (2016) Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem Soc Rev 45:6742–6765. https://doi.org/10.1039/C5CS00758E

    Article  CAS  PubMed  Google Scholar 

  20. Majd ZG, Taghizadeh SF, Amiri P, Vaseghi B (2019) Half-metallic properties of transition metals adsorbed on WS2 monolayer: a first-principles study. J Magn Magn Mater 481:129–135. https://doi.org/10.1016/J.JMMM.2019.01.063

    Article  CAS  Google Scholar 

  21. Lima IT, Vasconcelos R, Gargano R, Paura ENC (2020) A first-principles study of the substitutional doping of the MgCl2monolayer for spintronics applications. New J Chem 44:8833–8839. https://doi.org/10.1039/d0nj01264e

    Article  CAS  Google Scholar 

  22. Habib M, Muhammad Z, Khan R et al (2018) Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping. Nanotechnology 29:115701. https://doi.org/10.1088/1361-6528/aaa63e

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J, Zhang Q, Wang A et al (2019) A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 15:1901791. https://doi.org/10.1002/smll.201901791

    Article  CAS  Google Scholar 

  24. Wi S, Kim H, Chen M et al (2014) Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8:5270–5281. https://doi.org/10.1021/nn5013429

    Article  CAS  PubMed  Google Scholar 

  25. Giannozzi P, Baroni S, Bonini N et al (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  27. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687. https://doi.org/10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  28. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  31. Billeter SR, Curioni A, Andreoni W (2003) Efficient linear scaling geometry optimization and transition-state search for direct wavefunction optimization schemes in density functional theory using a plane-wave basis. Comput Mater Sci 27:437–445. https://doi.org/10.1016/S0927-0256(03)00043-0

    Article  Google Scholar 

  32. Li D, Barreteau C, Castell MR et al (2014) Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals: tight-binding and first-principles studies. Phys Rev B Condens Matter Mater Phys 90:205409. https://doi.org/10.1103/PhysRevB.90.205409

    Article  CAS  Google Scholar 

  33. He X, Helbig N, Verstraete MJ, Bousquet E (2021) TB2J: a python package for computing magnetic interaction parameters. Comput Phys Commun 264:107938. https://doi.org/10.1016/j.cpc.2021.107938

    Article  CAS  Google Scholar 

  34. Evans RFL, Fan WJ, Chureemart P et al (2014) Atomistic spin model simulations of magnetic nanomaterials. J Phys Condens Matter 26:103202. https://doi.org/10.1088/0953-8984/26/10/103202

    Article  CAS  PubMed  Google Scholar 

  35. Zhu J, Schwingenschlögl U (2014) Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I). ACS Appl Mater Interfaces 6:11675–11681. https://doi.org/10.1021/am502469m

    Article  CAS  PubMed  Google Scholar 

  36. Lahiri S, Thangavel R (2023) Investigation of electronic and magnetic properties in vacancy incorporated monolayer magnesium bromide for spintronics application: an ab-initio study. Phys Scr 98:055937. https://doi.org/10.1088/1402-4896/accc5a

    Article  Google Scholar 

  37. Li X, Wu X, Li Z et al (2012) Bipolar magnetic semiconductors: a new class of spintronics materials. Nanoscale 4:5680. https://doi.org/10.1039/c2nr31743e

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Li X, Yang J (2022) A review of bipolar magnetic semiconductors from theoretical aspects. Fundam Res 2:511–521. https://doi.org/10.1016/j.fmre.2022.22.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joksas D, AlMutairi A, Lee O et al (2022) Memristive, spintronic, and 2D-materials-based devices to improve and complement computing hardware. Adv Intell Syst 4:2200068. https://doi.org/10.1002/aisy.2022.2200068

    Article  Google Scholar 

  40. Webster L, Yan JA (2018) Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B 98:144411. https://doi.org/10.1103/PhysRevB.98.144411

    Article  CAS  Google Scholar 

  41. Lv HY, Lu WJ, Luo X et al (2019) Strain- and carrier-tunable magnetic properties of a two-dimensional intrinsically ferromagnetic semiconductor: CoBr 2 monolayer. Phys Rev B 99:134416. https://doi.org/10.1103/PhysRevB.99.134416

    Article  CAS  Google Scholar 

  42. Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092. https://doi.org/10.1063/1.1699114

    Article  CAS  Google Scholar 

  43. Liechtenstein AI, Katsnelson MI, Antropov VP, Gubanov VA (1987) Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J Magn Magn Mater 67:65–74. https://doi.org/10.1016/0304-8853(87)90721-9

    Article  CAS  Google Scholar 

  44. Korotin DM, Mazurenko VV, Anisimov VI, Streltsov SV (2015) Calculation of exchange constants of the Heisenberg model in plane-wave-based methods using the Green’s function approach. Phys Rev B Condens Matter Mater Phys 91(22):224405. https://doi.org/10.1103/PhysRevB.91.22.224405

    Article  Google Scholar 

  45. Pizzi G, Vitale V, Arita R et al (2020) Wannier90 as a community code: new features and applications. J Phys Condens Matter 32:165902. https://doi.org/10.1088/1361-648X/ab51ff

    Article  CAS  PubMed  Google Scholar 

  46. Evans RFL, Atxitia U, Chantrell RW (2015) Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets. Phys Rev B Condens Matter Mater Phys 91:144425. https://doi.org/10.1103/PhysRevB.91.144425

    Article  CAS  Google Scholar 

  47. Sameeullah M, Ishfaq M, Aldaghfag SA et al (2023) Magnetic, optoelectronic, and thermoelectric characteristics of Ln2MnSe4 (Ln = Yb, Lu) spinel chalcogenides: a DFT investigation. J Solid State Chem 326:124238. https://doi.org/10.1016/j.jssc.2023.124238

    Article  CAS  Google Scholar 

  48. Kazim MZ, Ishfaq M, Aldaghfag SA et al (2022) Investigation of Ba2LnRuO6 (Ln = Nd, Er) for spin-optoelectronic and thermoelectric devices. J Magn Magn Mater 560:169657. https://doi.org/10.1016/j.jmmm.2022.169657

    Article  CAS  Google Scholar 

  49. Kazim MZ, Ishfaq M, Aldaghfag SA et al (2023) Half metallicity and optical properties of Ba2B′ReO6(B′ = Cd, Er): a DFT insight. Phys Scr 98:095937. https://doi.org/10.1088/1402-4896/acecae

    Article  Google Scholar 

  50. Ishfaq M, Yaseen M, Al-Harbi FF, Butt MK (2023) Tailoring the magneto-electronic and optical properties of cobalt doped strontium titanate by first-principles calculations. Phys B Condens Matter 664:415025. https://doi.org/10.1016/j.physb.2023.415025

    Article  CAS  Google Scholar 

  51. Zafarullah Kazim M, Ishfaq M, Aldaghfag SA et al (2023) Investigation of low bandgap Rb2InAsCl6 and Rb2InAsBr6 compounds for energy harvesting applications. Chem Phys Lett 833:140933. https://doi.org/10.1016/j.cplett.2023.140933

    Article  CAS  Google Scholar 

  52. Kazim MZ, Ishfaq M, Aldaghfag SA et al (2024) Lead-free silver-indium based halide double perovskites for energy harvesting applications. J Phys Chem Solids 185:111756. https://doi.org/10.1016/j.jpcs.2023.111756

    Article  CAS  Google Scholar 

  53. Kazim MZ, Raza N, Aldaghfag SA et al (2024) Lead-free Cs2InAsX6 (X = Cl, Br) halide double perovskites: a DFT perspective on their potential for sustainable energy applications. J Phys Chem Solids 189:111954. https://doi.org/10.1016/j.jpcs.2024.111954

    Article  CAS  Google Scholar 

  54. Yaseen M, Ambreen H, Zia M et al (2021) Study of half metallic ferromagnetism and optical properties of Mn-Doped CdS. J Supercond Nov Magn 34:135–141. https://doi.org/10.1007/s10948-020-05674-0

    Article  CAS  Google Scholar 

  55. He J, Li S (2018) Two-dimensional janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity. Comput Mater Sci 152:151–157. https://doi.org/10.1016/j.commatsci.2018.05.049

    Article  CAS  Google Scholar 

  56. Lv H, Niu Y, Wu X, Yang J (2021) Electric-field tunable magnetism in van der Waals Bilayers with A-type antiferromagnetic order: unipolar versus bipolar magnetic semiconductor. Nano Lett 21:7050–7055. https://doi.org/10.1021/acs.nanolett.1c02604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge National Supercomputing Mission (NSM) for providing computing resources of ‘PARAM Seva’ at IIT Hyderabad, which is implemented by C-DAC and supported by the Ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST), Government of India. S. Lahiri acknowledges the research fellowship of IIT(ISM), Dhanbad. There are no conflicts to declare.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SL was involved in conceptualization, methodology, investigation, and writing—original draft. RT was involved in supervision, conceptualization and data analysis.

Corresponding author

Correspondence to R. Thangavel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5621 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, S., Thangavel, R. An ab initio and Monte Carlo study of 3d transition metal-substituted MgBr2: a spintronics perspective. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10189-3

Navigation