Skip to main content

Advertisement

Log in

Emerging trends in lanthanide-based upconversion and downconversion material for PSCs & DSSCs

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review thoroughly analyzes the progress and challenges in the emerging fields of rare-earth-based upconversion (UC) and downconversion (DC) materials for dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). Despite being outperformed by silicon solar cells in terms of efficiency, DSSCs and PSCs have garnered significant attention owing to their ease of fabrication using low-cost materials, making them promising alternatives for commercial photovoltaic devices. However, their power conversion efficiency (PCE) is limited by significant absorption in the visible region of the solar spectrum, leading to transmission losses of sub-bandgap photons. Rare-earth-doped luminescent materials provide a favorable solution by converting these low-energy photons into high-energy photon, thereby enhancing the light absorption and scattering effects of solar cells. This review delves into the underlying mechanisms of trivalent lanthanide ions, which exhibit exceptional luminescence, photostability, and sharply defined emission lines. The review also discusses the impact of microstructures on the properties and performance of these solar cells, emphasizing the importance of energy band alignment, defect passivation, and charge carrier transport facilitated by rare-earth doping. Additionally, this review covers fabrication techniques and discusses the broader implications of UC and DC materials in advancing future photovoltaic technologies. Further, this review offers a comprehensive perspective on the potential applications and future trends in integrating rare-earth-based materials into solar cells, aiming to maximize their efficiency and commercial viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Tilley RJ (2020) Colour and the optical properties of materials. John Wiley & Sons

    Book  Google Scholar 

  2. Sato M, Kim SW, Shimomura Y, Hasegawa T, Toda K, Adachi G. (2016) RE-doped phosphors for white light-emitting diodes. Handbook on the physics and chemistry of REs, 49:1–128 Elsevier

  3. Morrow RC (2008) LED lighting in horticulture. HortScience 43(7):1947–1950

    Article  Google Scholar 

  4. Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Liu RS, Chen X (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun 5(1):4312–4322

    Article  CAS  PubMed  Google Scholar 

  5. Lin CC, Liu RS (2011) Advances in phosphors for light-emitting diodes. The journal of physical chemistry letters 2(11):1268–1277

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42(16):6924–6958

    Article  CAS  PubMed  Google Scholar 

  7. Bünzli JC, Eliseeva SV (2013) Intriguing aspects of lanthanide luminescence. Chem Sci 4(5):1939–1949

    Article  Google Scholar 

  8. Buenzli JC (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293:19–47

    Article  Google Scholar 

  9. Kumari R, Vinayak KS, Kumar D. (2021) Synthesis techniques for rare earth doped up-conversion nano-materials for solar cells–a brief review. In IOP conference series: earth and environmental science 889(1): 012057 IOP Publishing

  10. Malta OL, e Silva FG (1998) A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of RE ions. Spectrochim Acta Part A Mol Biomol Spectrosc 54(11):1593–1599

    Article  Google Scholar 

  11. De Sa GF, Malta OL, de Mello DC, Simas AM, Longo RL, Santa-Cruz PA, da Silva Jr EF (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196(1):165–195

    Article  Google Scholar 

  12. Dong H, Sun LD, Yan CH (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44(6):1608–1634

    Article  CAS  PubMed  Google Scholar 

  13. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374

    Article  CAS  PubMed  Google Scholar 

  14. Bünzli JC (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755

    Article  PubMed  Google Scholar 

  15. Bünzli JC, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077

    Article  PubMed  Google Scholar 

  16. Kariaka NS, Lipa A, Carneiro Neto AN, Malta OL, Gawryszewska P, Amirkhanov VM (2023) Eu3+ and Tb3+ coordination compounds with phenyl-containing carbacylamidophosphates: comparison with selected Ln3+ β-diketonates. Front Chem 11:1188314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dieke GH (1968) Spectra and Energy Levels of RE Ions in Crystals.

  18. Eliseeva SV, Bünzli JC (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227

    Article  CAS  PubMed  Google Scholar 

  19. De la Mora MB, Amelines-Sarria O, Monroy BM, Hernández-Pérez CD, Lugo JE (2017) Materials for downconversion in solar cells: Perspectives and challenges. Sol Energy Mater Sol Cells 165:59–71

    Article  Google Scholar 

  20. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237

    Article  CAS  PubMed  Google Scholar 

  21. Qiao Y, Li S, Liu W, Ran M, Lu H, Yang Y (2018) Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells. Nanomaterials 8(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  22. El Ouafi M, Belmokhtar S, Bouajai A, Britel MR, Enrichi F, Armellini C, Chiappini A, Meneghet M, Ngoc TT, Zur L, Belluomo F (2017) RE ions doped down-conversion materials for third generation photovoltaic solar cells. In 2017 international renewable and sustainable energy conference (IRSEC), 1–4. IEEE

  23. Ansari AA, Nazeeruddin MK, Tavakoli MM (2021) Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells. Coord Chem Rev 436:213805

    Article  CAS  Google Scholar 

  24. Lahoz F, Pérez-Rodríguez C, Hernández SE, Martín IR, Lavín V, Rodríguez-Mendoza UR (2011) Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol Energy Mater Sol Cells 95(7):1671–1677

    Article  CAS  Google Scholar 

  25. Trupke T, Shalav A, Richards BS, Würfel P, Green MA (2006) Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol Energy Mater Sol Cells 90(18–19):3327–3338

    Article  CAS  Google Scholar 

  26. Shah SA, Sayyad MH, Sun J, Guo Z (2022) Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells. J REs 40(11):1651–1667

    CAS  Google Scholar 

  27. Shen J, Li Z, Cheng R, Luo Q, Luo Y, Chen Y, Chen X, Sun Z, Huang S (2014) Eu3+-doped NaGdF4 nanocrystal down-converting layer for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 6(20):17454–17462

    Article  CAS  PubMed  Google Scholar 

  28. Yao N, Huang J, Fu K, Deng X, Ding M, Xu X (2016) RE ion doped phosphors for DSSCsapplications. RSC Adv 6(21):17546–17559

    Article  CAS  Google Scholar 

  29. Bella F, Griffini G, Bongiovanni R, Turri S (2015) Light‐Cured Luminescent Coatings for Photovoltaic Devices. Dyes and Chromophores in Polymer Science, 361–91.

  30. Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le CH, Decoppet JD, Tsai JH, Gratzel C, Wu CG, Zakeeruddin SM (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10):3103–3109

    Article  CAS  PubMed  Google Scholar 

  31. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  32. Bai S, Amirruddin AK, Pandey AK, Samykano M, Ahmad MS, Sharma K, Tyagi VV (2021) Advancements in the development of various types of dye-sensitized solar cells: a comparative review. Energy Eng: J Assoc Energy Eng 118(4):737–759

    Article  Google Scholar 

  33. Song J, Gu Y, Lin Z, Liu J, Kang X, Gong X, Liu P, Yang Y, Jiang H, Wang J, Cao S (2024) Integrating light diffusion and conversion layers for highly efficient multicolored fiber-dye-sensitized solar cells. Adv Mater 36(16):2312590

    Article  CAS  Google Scholar 

  34. Chen C, Asiam FK, Kaliamurthy AK, Manikandan PN, Rahman MM, Ryu J, Kang HC, Yoo K, Lee JJ (2024) Iron-Nickel-Cobalt selenide nanoparticles as an efficient and transparent counter electrode for dye-sensitized solar cells. Surf Interfaces 23:104845

    Article  Google Scholar 

  35. Halme J, Boschloo G, Hagfeldt A, Lund P (2008) Spectral characteristics of light harvesting, electron injection, and steady-state charge collection in pressed TiO2 dye solar cells. J Phys Chem C 112(14):5623–5637

    Article  CAS  Google Scholar 

  36. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6(3):162–169

    Article  CAS  Google Scholar 

  37. Giribabu L, Kanaparthi RK, Velkannan V (2012) Molecular engineering of sensitizers for dye-sensitized solar cell applications. Chem Rec 12(3):306–328

    Article  CAS  PubMed  Google Scholar 

  38. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis (2, 2’-bipyridyl-4, 4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  39. Goldschmidt JC, Fischer S (2015) Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement. Adv Opt Mater 3(4):510–535

    Article  CAS  Google Scholar 

  40. Giribabu L, Kumar CV, Rao CS, Reddy VG, Reddy PY, Chandrasekharam M, Soujanya Y (2009) High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy Environ Sci 2(7):770–773

    Article  CAS  Google Scholar 

  41. Kanaparthi RK, Kandhadi J, Giribabu L (2012) Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 68(40):8383–8393

    Article  CAS  Google Scholar 

  42. Suyver JF, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Krämer KW, Reinhard C, Güdel HU (2005) Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt Mater 27(6):1111–1130

    Article  CAS  Google Scholar 

  43. Liang L, Liu Y, Zhao XZ (2013) Double-shell β-NaYF 4: Yb 3+, Er 3+/SiO 2/TiO 2 submicroplates as a scattering and upconverting layer for efficient dye-sensitized solar cells. Chem Commun 49(38):3958–3960

    Article  CAS  Google Scholar 

  44. Trupke T, Green MA, Würfel P (2002) Improving solar cell efficiencies by down-conversion of high-energy photons. J Appl Phys 92(3):1668–1674

    Article  CAS  Google Scholar 

  45. Shan GB, Assaaoudi H, Demopoulos GP (2011) Enhanced performance of DSSCsby utilization of an external, bifunctional layer consisting of uniform β-NaYF4: Er3+/Yb3+ nanoplatelets. ACS Appl Mater Interfaces 3(9):3239–3243

    Article  CAS  PubMed  Google Scholar 

  46. Lim MJ, Ko YN, Kang YC, Jung KY (2014) Enhancement of light-harvesting efficiency of DSSCsvia forming TiO 2 composite double layers with down/up converting phosphor dispersion. RSC Adv 4(20):10039–10042

    Article  CAS  Google Scholar 

  47. Matsuura D (2002) Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals. Appl Phys Lett 81(24):4526–4528

    Article  CAS  Google Scholar 

  48. Haase M, Schäfer H (2011) Nanopartikel für die Aufwärtskonversion. Angew Chem 123(26):5928–5950

    Article  Google Scholar 

  49. Ye S, Song EH, Zhang QY (2016) Transition metal-involved photon upconversion. Advanced. Science 3(12):1600302

    Google Scholar 

  50. Zhou B, Tao L, Chai Y, Lau SP, Zhang Q, Tsang YH (2016) Constructing interfacial energy transfer for photon up-and down-conversion from lanthanides in a core–shell nanostructure. Angew Chem Int Ed 55(40):12356–12360

    Article  CAS  Google Scholar 

  51. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  CAS  PubMed  Google Scholar 

  52. Zhu P, Wang D, Zhang Y, Liang Z, Li J, Zeng J, Zhang J, Xu Y, Wu S, Liu Z, Zhou X (2024) Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science 383(6682):524–531

    Article  CAS  PubMed  Google Scholar 

  53. Li H, Xie G, Fang J, Wang X, Li S, Lin D, Wang D, Huang N, Peng H, Qiu L (2024) Holistic dielectric and buffer interfacial layers enable high-efficiency PSCsand modules. Nano Energy 124:109507

    Article  CAS  Google Scholar 

  54. Reza MS, Reza MS, Ghosh A, Rahman MF, Rajabathar JR, Ahmed F, Sajid M, Buian MF, Bhandari J, Islam MA (2024) New highly efficient perovskite solar cell with power conversion efficiency of 31% based on Ca3NI3 and an effective charge transport layer. Opt Commun 561:130511

    Article  CAS  Google Scholar 

  55. Rajeswari R, Mrinalini M, Prasanthkumar S, Giribabu L (2017) Emerging of inorganic hole transporting materials for perovskite solar cells. Chem Rec 17(7):681–699

    Article  CAS  PubMed  Google Scholar 

  56. Wang HQ, Batentschuk M, Osvet A, Pinna L, Brabec CJ (2011) Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv Mater 23(22–23):2675–2680

    Article  CAS  PubMed  Google Scholar 

  57. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42(1):173–201

    Article  CAS  PubMed  Google Scholar 

  58. Lee SW, Kim S, Bae S, Cho K, Chung T, Mundt LE, Lee S, Park S, Park H, Schubert MC, Glunz SW (2016) UV degradation and recovery of perovskite solar cells. Sci Rep 6(1):38150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He M, Pang X, Liu X, Jiang B, He Y, Snaith H, Lin Z (2016) Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew Chem Int Ed 55(13):4280–4284

    Article  CAS  Google Scholar 

  60. Salado M, Contreras-Bernal L, Caliò L, Todinova A, López-Santos C, Ahmad S, Borras A, Idígoras J, Anta JA (2017) Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. J Mater Chem A 5(22):10917–10927

    Article  CAS  Google Scholar 

  61. Ehrler B, Alarcón-Lladó E, Tabernig SW, Veeken T, Garnett EC, Polman A (2020) Photovoltaics reaching for the Shockley-Queisser limit. ACS Energy Lett 5(9):3029–3033

    Article  CAS  Google Scholar 

  62. Ferdous TT, Urmi SS, Khan MA, Alim MA (2024) Carrier transport layer engineering of Cs2TiI2Br4 halide double perovskite solar cell via SCAPS 1D: approaching the Shockley Queisser limit. Micro Nanostructures, 192: 207881

  63. Bünzli JC, Chauvin AS (2014) Lanthanides in solar energy conversion. Handbook on the Physics and Chemistry of REs, 44:169–281. Elsevier

  64. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Rijckaert H, Zeng M, Haustraete K, Laforce B, Vincze L, Van Driessche I, Kaczmarek AM, Van Deun R (2018) Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv Func Mater 28(17):1707365

    Article  Google Scholar 

  66. Van Sark WG, Meijerink A, Schropp RE (2012) Solar spectrum conversion for photovoltaics using nanoparticles. Third generation photovoltaics, 4

  67. Leonard RL, Gray SK, Albritton SD, Brothers LN, Cross RM, Eastes AN, Hah HY, James HS, King JE, Mishra SR, Johnson JA (2013) RE doped downshifting glass ceramics for photovoltaic applications. J Non-Cryst Solids 366:1–5

    Article  CAS  Google Scholar 

  68. Ignjatović NL, Mančić L, Vuković M, Stojanović Z, Nikolić MG, Škapin S, Jovanović S, Veselinović L, Uskoković V, Lazić S, Marković S (2019) Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci Rep 9(1):16305

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rajeswari R, Islavath N, Raghavender M, Giribabu L (2020) Recent progress and emerging applications of RE doped phosphor materials for dye-sensitized and perovskite solar cells: a review. Chem Rec 20(2):65–88

    Article  CAS  PubMed  Google Scholar 

  70. Dwivedi A, Mishra K, Rai SB (2015) Multi-modal luminescence properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors—upconversion, downshifting and quantum cutting for spectral conversion. J Phys D Appl Phys 48(43):435103

    Article  Google Scholar 

  71. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–174

    Article  CAS  PubMed  Google Scholar 

  72. Yao N, Huang J, Fu K, Deng X, Ding M, Shao M, Xu X (2015) Enhanced light harvesting of DSSCswith up/down conversion materials. Electrochim Acta 154:273–277

    Article  CAS  Google Scholar 

  73. Jia J, Dong J, Lin J, Lan Z, Fan L, Wu J (2019) Improved photovoltaic performance of PSCsby utilizing down-conversion NaYF 4: Eu 3+ nanophosphors. J Mater Chem C 7(4):937–942

    Article  CAS  Google Scholar 

  74. Sun J, Yang X, Sun S, Zhao L, Wang S, Li Y (2022) Recent progress of RE conversion material in perovskite solar cells: a mini review. Inorg Chem Commun 143:109731

    Article  CAS  Google Scholar 

  75. Sehgal P, Narula AK (2021) Improved optical, electrochemical and photovoltaic properties of dye-sensitized solar cell composed of RE-doped zinc oxide. J Mater Sci: Mater Electron 32(12):16612–16622

    CAS  Google Scholar 

  76. Guo Q, Wu J, Yang Y, Liu X, Sun W, Wei Y, Lan Z, Lin J, Huang M, Chen H, Huang Y (2020) Low-temperature processed rare-earth doped brookite TiO2 scaffold for UV stable, hysteresis-free and high-performance perovskite solar cells. Nano Energy 77:105183

    Article  CAS  Google Scholar 

  77. Zhang B, Song Z, Jin J, Bi W, Li H, Chen C, Dai Q, Xu L, Song H (2019) Efficient RE co-doped TiO2 electron transport layer for high-performance perovskite solar cells. J Colloid Interface Sci 553:14–21

    Article  CAS  PubMed  Google Scholar 

  78. Nowsherwan GA, Zaib A, Shah AA, Khan M, Shakoor A, Bukhari SN, Riaz M, Hussain SS, Shar MA, Alhazaa A (2023) Preparation and numerical optimization of TiO2: CdS thin films in double perovskite solar cell. Energies 16(2):900

    Article  CAS  Google Scholar 

  79. Shakoor A, Nowsherwan GA, Alam W, Bhatti SY, Bilal A, Nadeem M, Zaib A, Hussain SS (2023) Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC). Physica B 654:414690

    Article  CAS  Google Scholar 

  80. Ji T, Wang YK, Feng L, Li GH, Wang WY, Li ZF, Hao YY, Cui YX (2021) Charge transporting materials for perovskite solar cells. Rare Met 40(10):2690–2711

    Article  CAS  Google Scholar 

  81. Efaz ET, Rhaman MM, Al Imam S, Bashar KL, Kabir F, Mourtaza ME, Sakib SN, Mozahid AF (2021) A review of primary technologies of thin-film solar cells. Eng Res Express 3(3):032001

    Article  Google Scholar 

  82. Zhang Q, Sando D, Nagarajan V (2016) Chemical route derived bismuth ferrite thin films and nanomaterials. J Mater Chem C 4(19):4092–4124

    Article  CAS  Google Scholar 

  83. Kumar TR, Sudarsan S, Dinesh A, Prabha G, Chozhanathmisra M, Sathiyamurthy S, Slimani Y, Almessiere MA, Baykal A, Jaganathan SK, Iqbal M (2024) Review of novel approach and scalability forecast of ZnSe and Perovskite/Graphene based thin film materials for high performance solar cell applications. Z Phys Chem 238(6):997–1017

    Article  Google Scholar 

  84. Tynell T, Terasaki I, Yamauchi H, Karppinen M (2013) Thermoelectric characteristics of (Zn, Al) O/hydroquinone superlattices. J Mater Chem A 1(43):13619–13624

    Article  CAS  Google Scholar 

  85. Nisula M, Karppinen M (2016) Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes. Nano Lett 16(2):1276–1281

    Article  CAS  PubMed  Google Scholar 

  86. Xiao W, Hui DY, Zheng C, Yu D, Qiang YY, Ping C, Xiang CL, Yi Z (2015) A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al 2 O 3 and alucone layers. Nanoscale Res Lett 10:1–7

    Article  Google Scholar 

  87. Heikkinen M, Ghiyasi R, Karppinen M (2024) Layer‐engineered functional multilayer thin‐film structures and interfaces through atomic and molecular layer deposition. Advanced Materials Interfaces, 2400262

  88. Khomenkova L, Jolivet A, Labbé C, Portier X, Cardin J, Gourbilleau F (2020) RE doped layers fabricated by atomic layer deposition. In Electrochemical Society Meeting Abstracts, 16:1066–1066

  89. Hansen PA (2014) Light conversion materials for solar cells by atomic layer deposition.

  90. Leskelä M, Mattinen M, Ritala M (2019) Atomic layer deposition of optoelectronic materials. J Vacuum Sci Technol B, 37(3): 030801

  91. Ritala M, Niinistö J (2009) Industrial applications of atomic layer deposition. ECS Trans 25(8):641

    Article  CAS  Google Scholar 

  92. Maula J (2010) Atomic layer deposition for industrial optical coatings. Chin Opt Lett 8(s1):53–58

    Article  Google Scholar 

  93. El Hat A, Chaki I, Essajai R, Mzerd A, Schmerber G, Regragui M, Belayachi A, Sekkat Z, Dinia A, Slaoui A, Abd-Lefdil M (2020) Growth and characterization of (Tb, Yb) Co-doping sprayed ZnO thin films. Crystals 10(3):169

    Article  Google Scholar 

  94. Zeng Z, Xu Y, Zhang Z, Gao Z, Luo M, Yin Z, Zhang C, Xu J, Huang B, Luo F, Du Y (2020) Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 49(4):1109–1143

    Article  CAS  PubMed  Google Scholar 

  95. Song Z, Xu W, Wu Y, Liu S, Bi W, Chen X, Song H (2020) Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells. Small 16(40):2001770

    Article  CAS  Google Scholar 

  96. Raza W, Nabi G, Shahzad A, Malik N, Raza N (2021) Electrochemical performance of lanthanum cerium ferrite nanoparticles for supercapacitor applications. J Mater Sci: Mater Electron 32:7443–7454

    CAS  Google Scholar 

  97. Khan LU, Khan ZU (2018) RE luminescence: Electronic spectroscopy and applications. Handbook of materials characterization, 345–404

  98. Abdelrazek MM, Hannora AE, Kamel RM, Morad I, Refaay DE, El-Desoky MM (2024) The influence of rare earth (La, Er and Yb) doped V2O5 films on the structural, linear and nonlinear optical properties and optical limiting for optoelectronic applications. Opt Quant Electron 56(3):404

    Article  CAS  Google Scholar 

  99. Atwood DA, editor (2013) The RE elements: fundamentals and applications. John Wiley & Sons

  100. Khuili M, Fazouan N, Abou El Makarim H, Atmani EH, Rai DP, Houmad M (2020) First-principles calculations of RE (RE= Tm, Yb, Ce) doped ZnO: structural, optoelectronic, magnetic, and electrical properties. Vacuum 181:109603

    Article  CAS  Google Scholar 

  101. Yang YY, Gong P, Ma WD, Hao R, Fang XY (2021) Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin Phys B 30(6):067803

    Article  CAS  Google Scholar 

  102. Jung JY (2022) Luminescent color-adjustable europium and terbium Co-doped strontium molybdate phosphors synthesized at room temperature applied to flexible composite for LED filter. Crystals 12(4):552–563

    Article  CAS  Google Scholar 

  103. Chen P, Han W, Zhao M, Su J, Li Z, Li D, Pi L, Zhou X, Zhai T (2021) Recent advances in 2D RE materials. Adv Func Mater 31(13):2008790–2008806

    Article  CAS  Google Scholar 

  104. Alkahtani M, Alenzi SM, Alsolami A, Alsofyani N, Alfahd A, Alzahrani YA, Aljuwayr A, Abduljawad M (2022) High-performance and stable PSCsusing carbon quantum dots and upconversion nanoparticles. Int J Mol Sci 23(22):14441–14453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen N, Li S (2019) Synthesis of oxygen-deficient and monodispersed Pr doped CeO2 nanocubes with enhanced resistive switching properties. In IOP Conference Series: Materials Science and Engineering, 576(1): 012035 IOP Publishing

  106. Andres J, Chauvin AS (2011) Lanthanides: luminescence. Encyclopedia of Inorganic and Bioinorganic Chemistry.

  107. Voncken JH, Voncken JH (2016) The RE Elements: An Introduction, Cham, Switzerland, Springer International Publishing 53–72

  108. Cioffi N, Colaianni L, Ieva E, Pilolli R, Ditaranto N, Angione MD, Cotrone S, Buchholt K, Spetz AL, Sabbatini L, Torsi L (2011) Electrosynthesis and characterization of gold nanoparticles for electronic capacitance sensing of pollutants. Electrochim Acta 56(10):3713–3720

    Article  CAS  Google Scholar 

  109. Domínguez-Domínguez S, Arias-Pardilla J, Berenguer-Murcia Á, Morallón E, Cazorla-Amorós D (2008) Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38:259–268

    Article  Google Scholar 

  110. Wang D, Luo H, Kou R, Gil MP, Xiao S, Golub VO, Yang Z, Brinker CJ, Lu Y (2004) A general route to macroscopic hierarchical 3D nanowire networks. Angew Chem Int Ed 43(45):6169–6173

    Article  CAS  Google Scholar 

  111. Hossain MK, Hossain S, Ahmed MH, Khan MI, Haque N, Raihan GA (2021) A review on optical applications, prospects, and challenges of rare-earth oxides. ACS Appl Electron Mater 3(9):3715–3746

    Article  CAS  Google Scholar 

  112. Li B, Tian F, Cui X, Xiang B, Zhao H, Zhang H, Wang D, Li J, Wang X, Fang X, Qiu M (2022) Review for rare-earth-modified perovskite materials and optoelectronic applications. Nanomaterials 12(10):1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang YY, Gong P, Ma WD, Li YL, Fang XY, Jia YH, Cao MS (2020) Different substitutions lead to differences in the transport and recombination properties of group v doped SiCNTs. Phys Lett A 384(25):126602

    Article  CAS  Google Scholar 

  114. Kong SS, Liu WK, Yu XX, Li YL, Yang LZ, Ma Y, Fang XY (2023) Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs. Front Phys 18(4):43302

    Article  Google Scholar 

  115. Amjad M, Khan MI, Alwadai N, Irfan M, Albalawi H, Almuqrin AH, Almoneef MM, Iqbal M (2022) Photovoltaic properties of ZnO films Co-doped with Mn and La to enhance solar cell efficiency. Nanomaterials 12(7):1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cang L, Qian Z, Wang J, Chen L, Wan Z, Yang K, Zhang H, Chen Y (2022) Applications and functions of rare-earth ions in perovskite solar cells. Chin Phys B 31(3):038402

    Article  CAS  Google Scholar 

  117. Lei P, Feng J, Zhang H (2020) Emerging biomaterials: taking full advantage of the intrinsic properties of RE elements. Nano Today 35:100952

    Article  CAS  Google Scholar 

  118. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev 44(6):1379–1415

    Article  CAS  PubMed  Google Scholar 

  119. Sharma RK, Mudring AV, Ghosh P (2017) Recent trends in binary and ternary rare-earth fluoride nanophosphors: how structural and physical properties influence optical behavior. J Lumin 189:44–63

    Article  CAS  Google Scholar 

  120. Chen G, Yang C, Prasad PN (2013) Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up-and down-conversion in lanthanide-doped nanoparticles. Acc Chem Res 46(7):1474–1486

    Article  CAS  PubMed  Google Scholar 

  121. DaCosta MV, Doughan S, Han Y, Krull UJ (2014) Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal Chim Acta 832:1–33

    Article  CAS  PubMed  Google Scholar 

  122. Toma M, Selyshchev O, Havryliuk Y, Pop A, Zahn DR (2022) Optical and structural characteristics of RE-doped zno nanocrystals prepared in colloidal solution. Photochem 2(3):515–527

    Article  CAS  Google Scholar 

  123. Wegh RT, Donker H, Oskam KD, Meijerink A (1999) Visible quantum cutting in LiGdF4: Eu3+ through downconversion. Science 283(5402):663–666

    Article  CAS  PubMed  Google Scholar 

  124. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem rev 114(10):5161–214

  125. Urquhart P (1988) Review of RE doped fibre lasers and amplifiers. IEE Proc J (Optoelectron) 135(6):385–407

    Article  CAS  Google Scholar 

  126. Suresh PA, John GS, Johnson AM, Unnikrishnan NV, Kumar KA (2024) Optical properties and applications of RE elements in solid materials. In New advances in materials technologies 211–231. Apple Academic Press

  127. Hamdalla TA, Hanafy TA, Seleim SM (2019) Effect of RE elements on the structural and optical properties of PMMA for possible uses in polymer optical communications. Phase Trans 92(6):603–613

    Article  CAS  Google Scholar 

  128. Liu G (2015) Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev 44(6):1635–1652

    Article  CAS  PubMed  Google Scholar 

  129. Zhu X, Zhang J, Liu J, Zhang Y (2019) Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci 6(22):1901358

    Article  CAS  Google Scholar 

  130. Zhao F, Liang Y, Lee JB, Hwang SJ (2019) Applications of RE Tb3+-Yb3+ co-doped down-conversion materials for solar cells. Mater Sci Eng, B 248:114404

    Article  CAS  Google Scholar 

  131. Das S, Mandal KC (2012) Optical downconversion in RE (Tb3+ and Yb3+) doped CdS nanocrystals. Mater Lett 66(1):46–49

    Article  CAS  Google Scholar 

  132. Zhong Y, Dai H (2020) A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res 13(5):1281–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McKittrick J, Shea-Rohwer LE (2014) Down conversion materials for solid-state lighting. J Am Ceram Soc 97(5):1327–1352

    Article  CAS  Google Scholar 

  134. Sun LD, Dong H, Zhang PZ, Yan CH (2015) Upconversion of RE nanomaterials. Annu Rev Phys Chem 66(1):619–642

    Article  CAS  PubMed  Google Scholar 

  135. Hussain SS, Riaz S, Nowsherwan GA, Jahangir K, Raza A, Iqbal MJ, Sadiq I, Hussain SM, Naseem S (2021) Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D. J Renew Energy 1:6668687

    Google Scholar 

  136. Agarwal R, Vyas Y, Chundawat P, Ameta C (2021) Outdoor performance and stability assessment of DSSCs(DSSCs). In Solar Radiation-Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Application, IntechOpen

  137. Chen X, Xu W, Song H, Chen C, Xia H, Zhu Y, Zhou D, Cui S, Dai Q, Zhang J (2016) Highly efficient LiYF4: Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl Mater Interfaces 8(14):9071–9079

    Article  CAS  PubMed  Google Scholar 

  138. Roh J, Yu H, Jang J (2016) Hexagonal β-NaYF4: Yb3+, Er3+ nanoprism-incorporated upconverting layer in PSCsfor near-infrared sunlight harvesting. ACS Appl Mater Interfaces 8(31):19847–19852

    Article  CAS  PubMed  Google Scholar 

  139. Meng FL, Wu JJ, Zhao EF, Zheng YZ, Huang ML, Dai LM, Tao X, Chen JF (2017) High-efficiency near-infrared enabled planar PSCsby embedding upconversion nanocrystals. Nanoscale 9(46):18535–18545

    Article  CAS  PubMed  Google Scholar 

  140. Lai X, Li X, Lv X, Zheng YZ, Meng F, Tao X (2017) Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J Power Sources 372:125–133

    Article  CAS  Google Scholar 

  141. Wang X, Zhang Z, Qin J, Shi W, Liu Y, Gao H, Mao Y (2017) Enhanced photovoltaic performance of PSCsbased on Er-Yb co-doped TiO2 nanorod arrays. Electrochim Acta 245:839–845

    Article  CAS  Google Scholar 

  142. Zhou D, Liu D, Jin J, Chen X, Xu W, Yin Z, Pan G, Li D, Song H (2017) Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells. J Mater Chem A 5(32):16559–16567

    Article  CAS  Google Scholar 

  143. Zhang Z, Qin J, Shi W, Liu Y, Zhang Y, Liu Y, Gao H, Mao Y (2018) Enhanced power conversion efficiency of PSCswith an up-conversion material of Er 3+-Yb 3+-Li+ tri-doped TiO 2. Nanoscale Res Lett 13:1–8

    Google Scholar 

  144. Hu J, Qiao Y, Yang Y, Zhao L, Liu W, Li S, Liu P, Chen M (2017) Enhanced performance of hole-conductor-free PSCsby utilization of core/shell-structured β-NaYF4: Yb3+, Er3+@ SiO2 nanoparticles in ambient air. IEEE J Photovoltaics 8(1):132–136

    Article  Google Scholar 

  145. Li Y, Wang G, Pan K, Jiang B, Tian C, Zhou W, Fu H (2012) NaYF4: Er 3+/Yb 3+–graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells. J Mater Chem 22(38):20381–20386

    Article  CAS  Google Scholar 

  146. Wang J, Wu J, Lin J, Huang M, Huang Y, Lan Z, Xiao Y, Yue G, Yin S, Sato T (2012) Application of Y2O3: Er3+ nanorods in dye-sensitized solar cells. Chem Sus Chem 5(7):1307–1312

    Article  CAS  Google Scholar 

  147. Wu J, Wang J, Lin J, Lan Z, Tang Q, Huang M, Huang Y, Fan L, Li Q, Tang Z (2012) Enhancement of the photovoltaic performance of DSSCsby doping Y {sub 0.78} Yb {sub 0.20} Er {sub 0.02} F {sub 3} in the photoanode. Advanced Energy Materials 2

  148. Li Y, Pan K, Wang G, Jiang B, Tian C, Zhou W, Qu Y, Liu S, Feng L, Fu H (2013) Enhanced photoelectric conversion efficiency of DSSCsby the incorporation of dual-mode luminescent NaYF4: Yb 3+/Er 3+. Dalton Trans 42(22):7971–7979

    Article  CAS  PubMed  Google Scholar 

  149. Du P, Lim JH, Leem JW, Cha SM, Yu JS (2015) Enhanced photovoltaic performance of dye-sensitized solar cells by efficient near-infrared sunlight harvesting using upconverting Y 2 O 3: Er 3+/Yb 3+ phosphor nanoparticles. Nanoscale Res Lett 10:1–6

    Article  Google Scholar 

  150. Li L, Yang Y, Fan R, Chen S, Wang P, Yang B, Cao W (2014) Conductive upconversion Er, Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells. ACS Appl Mater Interface 6(11):8223–8229

    Article  CAS  Google Scholar 

  151. Yu J, Yang Y, Fan R, Liu D, Wei L, Chen S, Li L, Yang B, Cao W (2014) Enhanced near-infrared to visible upconversion nanoparticles of Ho3+-Yb3+-F–tri-doped TiO2 and its application in DSSCswith 37% improvement in power conversion efficiency. Inorg Chem 53(15):8045–8053

    Article  CAS  PubMed  Google Scholar 

  152. Zhu G, Wang H, Zhang Q, Zhang L (2015) Enhanced photovoltaic performance of DSSCsbased on NaYF4: Yb3+, Er3+-incorporated nanocrystalline TiO2 electrodes. J Colloid Interface Sci 451:15–20

    Article  CAS  PubMed  Google Scholar 

  153. Han CH, Lee HS, Lee KW, Han SD, Singh I (2009) Synthesis of amorphous Er3+-Yb3+ co-doped TiO2 and its application as a scattering layer for dye-sensitized solar cells. Bull Korean Chem Soc 30(1):219–223

    Article  CAS  Google Scholar 

  154. Shan GB, Demopoulos GP (2010) Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv Mater 22(39):4373–4377

    Article  CAS  PubMed  Google Scholar 

  155. Li Q, Lin J, Wu J, Lan Z, Wang Y, Peng F, Huang M (2011) Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+). Electrochim Acta 56(14):4980–4984

    Article  CAS  Google Scholar 

  156. Bai J, Zhao R, Han G, Li Z, Diao G (2015) Synthesis of 1D upconversion CeO2: Er, Yb nanofibers via electrospinning and their performance in dye-sensitized solar cells. RSC Adv 5(54):43328–43333

    Article  CAS  Google Scholar 

  157. Du P, Lim JH, Kim SH, Yu JS (2016) Facile synthesis of Gd 2 O 3: Ho 3+/Yb 3+ nanoparticles: an efficient upconverting material for enhanced photovoltaic performance of dye-sensitized solar cells. Opt Mater Express 6(6):1896–1904

    Article  CAS  Google Scholar 

  158. Yu J, Yang Y, Fan R, Wang P, Dong Y (2016) Enhanced photovoltaic performance of DSSCsusing a new photoelectrode material: upconversion YbF 3-Ho/TiO 2 nanoheterostructures. Nanoscale 8(7):4173–4180

    Article  CAS  PubMed  Google Scholar 

  159. Chander N, Khan AF, Chandrasekhar PS, Thouti E, Swami SK, Dutta V, Komarala VK (2014) Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells. Applied Physics Letters 105(3)

  160. Bi W, Wu Y, Zhang B, Jin J, Li H, Liu L, Xu L, Dai Q, Chen C, Song H (2019) Enhancing photostability of PSCsby Eu (TTA) 2 (Phen) MAA interfacial modification. ACS Appl Mater Interfaces 11(12):11481–11487

    Article  CAS  PubMed  Google Scholar 

  161. Hou X, Xuan T, Sun H, Chen X, Li H, Pan L (2016) High-performance PSCsby incorporating a ZnGa2O4: Eu3+ nanophosphor in the mesoporous TiO2 layer. Sol Energy Mater Sol Cells 149:121–127

    Article  CAS  Google Scholar 

  162. Chen W, Luo Q, Zhang C, Shi J, Deng X, Yue L, Wang Z, Chen X, Huang S (2017) Effects of down-conversion CeO 2: Eu 3+ nanophosphors in perovskite solar cells. J Mater Sci: Mater Electron 11346–57

  163. Rahman NU, Khan WU, Li W, Khan S, Khan J, Zheng S, Su T, Zhao J, Aldred MP, Chi Z (2019) Simultaneous enhancement in performance and UV-light stability of organic–inorganic PSCsusing a samarium-based down conversion material. J Mater Chem A 7(1):322–329

    Article  CAS  Google Scholar 

  164. Kim CW, Eom TY, Yang IS, Kim BS, Lee WI, Kang YS, Kang YS (2017) Dual-function Au@ Y2O3: Eu3+ smart film for enhanced power conversion efficiency and long-term stability of perovskite solar cells. Sci Rep 7(1):6849

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhou D, Liu D, Pan G, Chen X, Li D, Xu W, Bai X, Song H (2017) Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv Mater 29(42):1704149

    Article  Google Scholar 

  166. Noh Y, Choi M, Kim K, Song O, Noh Y, Choi M, Kim K, Song O (2016) Properties of Working Electrodes with Nano YBO 3: Eu 3+ Phosphor in a Dye Sensitized Solar Cell. J Korean Ceram Soc 53(2):253–257

    Article  CAS  Google Scholar 

  167. Zahedifar M, Chamanzadeh Z, Madani M, Moradi M, Sharifpour N (2016) Synthesis and characterization of GdVO 4: Dy 3+ nanosheets as down converter: application in dye-sensitized solar cells. J Mater Sci: Mater Electron 27:4447–4456

    CAS  Google Scholar 

  168. Hafez H, Wu J, Lan Z, Li Q, Xie G, Lin J, Huang M, Huang Y, Abdel-Mottaleb MS (2010) Enhancing the photoelectrical performance of DSSCsusing TiO2: Eu3+ nanorods. Nanotechnology 21(41):415201

    Article  PubMed  Google Scholar 

  169. Qu X, Hou Y, Liu M, Shi L, Zhang M, Song H, Du F (2016) Yttrium doped TiO2 porous film photoanode for DSSCswith enhanced photovoltaic performance. Results in Physics 6:1051–1058

    Article  Google Scholar 

  170. Li Q, Lin J, Wu J, Lan Z, Wang J, Wang Y, Peng F, Huang M, Xiao Y (2011) Preparation of Gd 2 O 3: Eu 3+ downconversion luminescent material and its application in dye-sensitized solar cells. Chin Sci Bull 56:3114–3118

    Article  CAS  Google Scholar 

  171. Li Q, Lin J, Wu J, Lan Z, Wang Y, Peng F, Huang M (2013) Improving photovoltaic performance of dye-sensitized solar cell by downshift luminescence and p-doping effect of Gd2O3: Sm3+. J Lumin 134:59–62

    Article  CAS  Google Scholar 

  172. Oh JH, Song HM, Eom YK, Ryu JH, Ju MJ, Kim HK (2011) Wavelength conversion lanthanide (III)-cored complex for highly efficient dye-sensitized solar cells. Bull Korean Chem Soc 32(8):2743–2750

    Article  Google Scholar 

  173. Yue J, Xiao Y, Li Y, Han G, Zhang Y, Hou W (2017) Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer. Org Electron 1(43):121–129

    Article  Google Scholar 

  174. Duan J, Wang J, Tang Q, He B, Wang W (2017) Long persistence phosphor assisted all-weather solar cells. Electricity generation beyond sunny days. Chemical Communications 53(22): 3209–12

  175. Wu J, Wang J, Lin J, Xiao Y, Yue G, Huang M, Sato T (2013) Dual functions of YF3: Eu3+ for improving photovoltaic performance of dye-sensitized solar cells. Sci Rep 3(1):2058

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yang W, Li X, Chi D, Zhang H, Liu X (2014) Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. Nanotechnology 25(48):482001

    Article  PubMed  Google Scholar 

  177. Yun S, Hagfeldt A, editors (2019) Counter Electrodes for Dye-Sensitized and PSCs(2 Vols.). John Wiley & Sons

  178. Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X (2022) Rare-earth doping in nanostructured inorganic materials. Chem Rev 122(6):5519–5603

    Article  CAS  PubMed  Google Scholar 

  179. Kharel PL, Zamborini FP, Alphenaar BW (2018) Enhancing the photovoltaic performance of DSSCswith rare-earth metal oxide nanoparticles. J Electrochem Soc 165(3):H52

    Article  CAS  Google Scholar 

  180. Sunde TO, Lindgren M, Mason TO, Einarsrud MA, Grande T (2014) Solid solubility of RE elements (Nd, Eu, Tb) in In 2–x Sn x O 3–effect on electrical conductivity and optical properties. Dalton Trans 43(25):9620–9632

    Article  CAS  PubMed  Google Scholar 

  181. Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating RE element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46(6):3406–3414

    Article  CAS  PubMed  Google Scholar 

  182. Gupta SK, Sudarshan K, Kadam RM (2021) Optical nanomaterials with focus on RE doped oxide: a Rev. Mater Today Commun 27:102277

    Article  CAS  Google Scholar 

  183. Balaram V (2019) RE elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10(4):1285–1303

    Article  CAS  Google Scholar 

  184. Zhang M, Lin Y, Mullen TJ, Lin WF, Sun LD, Yan CH, Patten TE, Wang D, Liu GY (2012) Improving hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. j phys chem lett 3(21):3188–3192

    Article  CAS  PubMed  Google Scholar 

  185. Sovacool BK, Ali SH, Bazilian M, Radley B, Nemery B, Okatz J, Mulvaney D (2020) Sustainable minerals and metals for a low-carbon future. Science 367(6473):30–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Centre of Excellence in Solid State Physics, University of the Punjab, Lahore for all the necessary support.

Funding

This research has not been supported by any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.A.N; Methodology, G.A.N, writing—original draft preparation, G.A.N, and S.I; writing—review and editing, G.A.N, M.K, and N.N; resources and funding acquisition, S.R, S.N, and S.S.H and Supervision, S.S.H, and S.N. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ghazi Aman Nowsherwan.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowsherwan, G.A., Khan, M., Nowsherwan, N. et al. Emerging trends in lanthanide-based upconversion and downconversion material for PSCs & DSSCs. J Mater Sci 59, 16411–16448 (2024). https://doi.org/10.1007/s10853-024-10183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10183-9

Navigation