Skip to main content

Advertisement

Log in

Prediction of residual stresses in welded structures based on neural network: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The wide application of welding manufacturing across key significant industries has aroused an increasing concern on weldments’ reliability. Weld residual stress, as a critical factor, is closely related to structural and material-level failures of weldments. Hence, the prediction of residual stress is necessary for ensuring weldments’ reliability. Neural network models have emerged as promising methods to achieve this prediction. In this review, the prediction of residual stress based on neural network models is reviewed to summarize current state and uncover their limitations. In terms of these limitations, this review gives substantial suggestions for future research on neural network modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Withers PJ (2007) Residual stress and its role in failure. Rep Progr Phys 70:2211. https://doi.org/10.1088/0034-4885/70/12/R04

    Article  Google Scholar 

  2. Wu C, Kim J-W (2018) Analysis of welding residual stress formation behavior during circumferential TIG welding of a pipe. Thin-Walled Struct 132:421–430. https://doi.org/10.1016/j.tws.2018.09.020

    Article  Google Scholar 

  3. D’Alvise L, Chantzis D, Schoinochoritis B, Salonitis K (2015) Modelling of part distortion due to residual stresses relaxation: an aeronautical case study. Procedia Cirp 31:447–452. https://doi.org/10.1016/j.procir.2015.03.069

    Article  Google Scholar 

  4. Ao S, Li C, Huang Y, Luo Z (2020) Determination of residual stress in resistance spot-welded joint by a novel X-ray diffraction. Measurement 161:107892. https://doi.org/10.1016/j.measurement.2020.107892

    Article  Google Scholar 

  5. Kohandehghan AR, Serajzadeh S, Kokabi AH (2010) A study on residual stresses in gas tungsten arc welding of AA5251. Mater Manuf Processes 25:1242–1250. https://doi.org/10.1080/10426914.2010.481004

    Article  CAS  Google Scholar 

  6. Prime MB (2000) Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater Technol 123:162–168. https://doi.org/10.1115/1.1345526

    Article  Google Scholar 

  7. L.-E. Lindgren, ed., Computational Welding Mechanics: Thermomechanical and Microstructural Simulations, in: CRC Press, 2007. https://doi.org/10.1201/9781439824092.

  8. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press. https://doi.org/10.1093/oso/9780198538493.001.0001

    Article  Google Scholar 

  9. Hassoun MH, Intrator N, McKay S, Christian W (1996) Fundamentals of artificial neural networks. Comput Phys 10:137–137. https://doi.org/10.1063/1.4822376

    Article  Google Scholar 

  10. Qiu X, Ren Y, Suganthan PN, Amaratunga GAJ (2017) Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl Soft Comput 54:246–255. https://doi.org/10.1016/j.asoc.2017.01.015

    Article  Google Scholar 

  11. Wang H, Li G, Wang G, Peng J, Jiang H, Liu Y (2017) Deep learning based ensemble approach for probabilistic wind power forecasting. Appl Energy 188:56–70. https://doi.org/10.1016/j.apenergy.2016.11.111

    Article  Google Scholar 

  12. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507. https://doi.org/10.1126/science.1127647

    Article  CAS  PubMed  Google Scholar 

  13. Khoshroyan A, Darvazi AR (2020) Effects of welding parameters and welding sequence on residual stress and distortion in Al6061-T6 aluminum alloy for T-shaped welded joint. T Nonferr Metal Soc 30:76–89. https://doi.org/10.1016/S1003-6326(19)65181-2

    Article  CAS  Google Scholar 

  14. Zhao L, Liang J, Zhong Q, Yang C, Sun B, Du J (2014) Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe. Adv Eng Software 68:70–79. https://doi.org/10.1016/j.advengsoft.2013.12.004

    Article  Google Scholar 

  15. Sun J, Klassen J, Nitschke-Pagel T, Dilger K (2018) Effects of heat source geometric parameters and arc efficiency on welding temperature field, residual stress, and distortion in thin-plate full-penetration welds. Int J Adv Manuf Technol 99:497–515. https://doi.org/10.1007/s00170-018-2516-6

    Article  Google Scholar 

  16. Farajkhah V, Liu Y (2017) Effect of clamping area and welding speed on the friction stir welding-induced residual stresses. Int J Adv Manuf Technol 90:339–348. https://doi.org/10.1007/s00170-016-9393-7

    Article  Google Scholar 

  17. Mathew J, Griffin J, Alamaniotis M, Kanarachos S, Fitzpatrick ME (2018) Prediction of welding residual stresses using machine learning: Comparison between neural networks and neuro-fuzzy systems. Appl Soft Comput 70:131–146. https://doi.org/10.1016/j.asoc.2018.05.017

    Article  Google Scholar 

  18. M. Riedmiller, H. Braun, 1993 A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: IEEE International Conference on Neural Networks. 1: 586–591. https://doi.org/10.1109/ICNN.1993.298623.

  19. H. Yu, B.M. Wilamowski, Levenberg–Marquardt Training, Intelligent Systems. (2018). https://api.semanticscholar.org/CorpusID:240124461.

  20. Edwin Raja Dhas J, Kumanan S (2016) Evolutionary fuzzy SVR modeling of weld residual stress. Appl Soft Comput 42:423–430. https://doi.org/10.1016/j.asoc.2016.01.050

    Article  Google Scholar 

  21. Nagesh DS, Datta GL (2010) Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process. Appl Soft Comput 10:897–907. https://doi.org/10.1016/j.asoc.2009.10.007

    Article  Google Scholar 

  22. Datta S, Pratihar DK, Bandyopadhyay PP (2012) Modeling of input–output relationships for a plasma spray coating process using soft computing tools. Appl Soft Comput 12:3356–3368. https://doi.org/10.1016/j.asoc.2012.07.015

    Article  Google Scholar 

  23. Edwin Raja Dhas J, Kumanan S (2014) Neuro evolutionary model for weld residual stress prediction. Appl Soft Comput 14:461–468. https://doi.org/10.1016/j.asoc.2013.08.019

    Article  Google Scholar 

  24. Shami TM, El-Saleh AA, Alswaitti M, Al-Tashi Q, Summakieh MA, Mirjalili S (2022) Particle swarm optimization: a comprehensive survey. IEEE Access 10:10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859

    Article  Google Scholar 

  25. Mathew J, Moat RJ, Paddea S, Fitzpatrick ME, Bouchard PJ (2017) Prediction of residual stresses in girth welded pipes using an artificial neural network approach. Int J Press Vessels Pip 150:89–95. https://doi.org/10.1016/j.ijpvp.2017.01.002

    Article  Google Scholar 

  26. M.F. Møller, A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, in: 1990. https://api.semanticscholar.org/CorpusID:8029054.

  27. Bouchard PJ (2007) Validated residual stress profiles for fracture assessments of stainless steel pipe girth welds. Int J Press Vessels Pip 84:195–222. https://doi.org/10.1016/j.ijpvp.2006.10.006

    Article  CAS  Google Scholar 

  28. Ahmadzadeh M, Hoseini Fard A, Saranjam B, Salimi HR (2012) Prediction of residual stresses in gas arc welding by back propagation neural network. NDT E Int. 52:136–143. https://doi.org/10.1016/j.ndteint.2012.07.009

    Article  Google Scholar 

  29. Rubio JDJ (2021) Stability analysis of the modified levenberg–marquardt algorithm for the artificial neural network training. IEEE Trans Neural Netw Learn Syst 32:3510–3524. https://doi.org/10.1109/TNNLS.2020.3015200

    Article  PubMed  Google Scholar 

  30. Na MG, Kim JW, Lim DH, Kang Y-J (2008) Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nuclear Eng Design. 238:1503–1510. https://doi.org/10.1016/j.nucengdes.2007.12.003

    Article  CAS  Google Scholar 

  31. Rissaki DK, Benardos PG, Vosniakos G-C, Smith MC, Vasileiou AN (2023) Residual stress prediction of arc welded austenitic pipes with artificial neural network ensemble using experimental data. Int J Press Vessels PipING 204:104954. https://doi.org/10.1016/j.ijpvp.2023.104954

    Article  CAS  Google Scholar 

  32. Park J, An G, Ma N, Kim S-J (2023) Prediction of transverse welding residual stress considering transverse and bending constraints in butt welding. J Manuf Processes 102:182–194. https://doi.org/10.1016/j.jmapro.2023.07.043

    Article  Google Scholar 

  33. Netrapalli P (2019) Stochastic gradient descent and its variants in machine learning. J Indian Inst Sci 99:201–213. https://doi.org/10.1007/s41745-019-0098-4

    Article  Google Scholar 

  34. Liu F, Tao C, Dong Z, Jiang K, Zhou S, Zhang Z, Shen C (2021) Prediction of welding residual stress and deformation in electro-gas welding using artificial neural network. Materials Today Communications 29:102786. https://doi.org/10.1016/j.mtcomm.2021.102786

    Article  CAS  Google Scholar 

  35. Whittington JCR, Bogacz R (2019) Theories of error back-propagation in the brain. Trends Cogn Sci 23:235–250. https://doi.org/10.1016/j.tics.2018.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng M, Jiao L, Yan P, Feng L, Qiu T, Wang X, Zhang B (2021) Prediction of surface residual stress in end milling with Gaussian process regression. Measurement 178:109333. https://doi.org/10.1016/j.measurement.2021.109333

    Article  Google Scholar 

  37. Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G (2021) Gaussian Process Regression for Materials and Molecules. Chem Rev 121:10073–10141. https://doi.org/10.1021/acs.chemrev.1c00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schonlau M, Zou RY (2020) The random forest algorithm for statistical learning. Stand Genomic Sci 20:3–29. https://doi.org/10.1177/1536867X20909688

    Article  Google Scholar 

  39. Mathew J, Moat RJ, Paddea S, Francis JA, Fitzpatrick ME, Bouchard PJ (2017) Through-thickness residual stress profiles in austenitic stainless steel welds: a combined experimental and prediction study. Metallurgical Mater Trans A-Phys Metall Mater Sci 48A:6178–6191. https://doi.org/10.1007/s11661-017-4359-4

    Article  CAS  Google Scholar 

  40. Zainal N, Zain AM, Radzi NHM, Othman MR (2016) Glowworm swarm optimization (GSO) for optimization of machining parameters. J Intell Manuf 27:797–804. https://doi.org/10.1007/s10845-014-0914-7

    Article  Google Scholar 

  41. Wang L, Alexander CA (2015) Big data in design and manufacturing engineering. AJEAS 8:223–232. https://doi.org/10.3844/ajeassp.2015.223.232

    Article  Google Scholar 

  42. Khan AUR, Othman M, Madani SA, Khan SU (2014) A survey of mobile cloud computing application models. IEEE Commun Surv Tutorials 16:393–413. https://doi.org/10.1109/SURV.2013.062613.00160

    Article  Google Scholar 

  43. Assunção MD, Calheiros RN, Bianchi S, Netto MAS, Buyya R (2015) Big Data computing and clouds: trends and future directions. J Parallel Distrib Computing 79–80:3–15. https://doi.org/10.1016/j.jpdc.2014.08.003

    Article  Google Scholar 

  44. Gandomi A, Haider M (2015) Beyond the hype: Big data concepts, methods, and analytics. Int J Inf Manage 35:137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

    Article  Google Scholar 

  45. Mishra S, DebRoy T (2005) A heat-transfer and fluid-flow-based model to obtain a specific weld geometry using various combinations of welding variables. J Appl Phys 98:044902. https://doi.org/10.1063/1.2001153

    Article  CAS  Google Scholar 

  46. Kumar A, DebRoy T (2004) Guaranteed fillet weld geometry from heat transfer model and multivariable optimization. Int J Heat Mass Transf 47:5793–5806. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.038

    Article  Google Scholar 

  47. Rai R, DebRoy T (2006) Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model. J Phys D: Appl Phys 39:1257–1266. https://doi.org/10.1088/0022-3727/39/6/037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are grateful to Class III Peak Discipline of Shanghai—Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing) for its support in conducting experimental measurements.

Author information

Authors and Affiliations

Authors

Contributions

Yuli Qin was involved in methodology, software, project administration, data curation, writing—original draft, validation, investigation, writing—original draft and software. Chunwei Ma contributed to material preparation, resources, supervision and project administration. Lin Mei took part in conceptualization, resources, supervision and validation.

Corresponding author

Correspondence to Chunwei Ma.

Ethics declarations

Conflict of interest

I, along with my coauthors, have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Ma, C. & Mei, L. Prediction of residual stresses in welded structures based on neural network: a review. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10178-6

Navigation