Skip to main content

Advertisement

Log in

Intelligent anti-corrosion coating with self-healing capability and superior mechanical properties

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Intelligent anti-corrosion coatings with self-healing capabilities and enhanced mechanical properties are essential for prolonging the service life of substrate materials. While extensive research has been conducted on coatings with single functions, there remains significant potential for studies that integrate both functionalities simultaneously. In this study, a self-healing anti-corrosion polyurethane composite coating (TM/PU) was developed by doping it with TO@CA microcapsules (tung oil calcium alginate, TO@CA) and multi-walled carbon nanotubes (MWCNTs). The experimental results demonstrated that the tensile strength of the composite coating T2M2/PU, containing 0.5 wt% TO@CA and 0.1 wt% MWCNTs, was 46.72% higher than that of the pure PU coating, while its adhesion strength increased by 123.20%. Moreover, MWCNTs played a crucial role in intelligently directing the distribution and diffusion of restorative agents within the coating. The T2M2/PU coating exhibited corrosion resistance for up to 648 h and achieved a self-healing rate of 91.7%, which is 243.45% higher than that of the pure PU coating, thereby enabling rapid repair. This study successfully integrated intelligent self-healing mechanisms with the enhancement of mechanical properties in coatings, offering a novel perspective for the corrosion protection of marine equipment structures and aerospace components.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data from this study are available within the article and its Supplementary Information. The raw data used in this study are available from the corresponding author upon reasonable request.

Code availability

All processed data are available within the article. The raw data used are available upon reasonable request.

References

  1. Li SY, Li H, Zhang Y, Yang W, Guo P, Li XW, Wang AY (2024) Dense Al2O3 sealing inhibited high hydrostatic pressure corrosion of Cr/GLC coating. npj Mater Degrad 8:1–10

    Article  Google Scholar 

  2. Verma J, Geng YQ, Wang JQ, Goel S (2023) Fabrication and testing of a multifunctional SiO2@ZnO core–shell nanospheres incorporated polymer coating for sustainable marine transport. Sci Rep 13:12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li W, Tao JJ, Chen YX, Wu KY, Luo J, Liu R (2023) Porous microspheres with corrosion sensing and active protecting abilities towards intelligent self-reporting and anti-corrosion coating. Prog Org Coat 178:107468

    Article  CAS  Google Scholar 

  4. Liang YS, He B, Fu G, Wu SJ, Fan B (2023) Effects of ambient temperature and state of galvanized layer on corrosion of galvanized steel in high-humidity neutral atmosphere. Materials 16:3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu CA, Li XC, Tong ZB, Chu ZZ, Fang H, Hu Y, Yang ZH (2024) Mimosa inspired intelligent anti-corrosive composite coating by incorporating lignin and pyridine derivatives grafted graphene oxide. Chem Eng J 483:149316

    Article  CAS  Google Scholar 

  6. Liu CB, Wu H, Qiang YJ, Zhao HC, Wang LP (2021) Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties. Corros Sci 184:109355

    Article  CAS  Google Scholar 

  7. Xie C, Jia Y, Xue MS, Yin ZZ, Luo YD, Hong Z, Liu WQ (2022) Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite. Prog Org Coat 168:106881

    Article  CAS  Google Scholar 

  8. Agayev FG, Trukhanov SV, Trukhanov AV, Jabarov SH, Ayyubova GS, Trukhanov AV (2022) Study of structural features and thermal properties of barium hexaferrite upon indium doping. J Therm Anal Calorim 147:14107–14114

    Article  CAS  Google Scholar 

  9. Vinnik DA, Starikov AY, Zhivulin VE, Astapovich KA, Turchenko VA, Trukhanov AV (2021) Structure and magnetodielectric properties of titanium substituted barium hexaferrites. Ceram Int 47:17293–17306

    Article  CAS  Google Scholar 

  10. Shakirzyanov RI, Kozlovskiy AL, Zdorovets MV, Zheludkevich AL, Shlimas DI, Trukhanov AV (2023) Impact of thermobaric conditions on phase content, magnetic and electrical properties of the CoFe2O4 ceramics. J Alloys Compd 954:170083

    Article  CAS  Google Scholar 

  11. Yang C, Wang C, Zhao X, Shen Z, Wen M, Zeng X (2024) Superhydrophobic surface on MAO-processed AZ31B alloy with zinc phosphate nanoflower arrays for excellent corrosion resistance in salt and acidic environments. Mater Design 239:112769

    Article  CAS  Google Scholar 

  12. Cao D, Bouzolin D, Lu H, Griffith DT (2024) Enhanced joining strength in additive-manufactured polylactic-acid structures fused by embedded heated metallic meshes. J Manuf Process 121:100–120

    Article  Google Scholar 

  13. Shen Z, Zhang J, Wu S, Luo X, Jenkins BM, Zeng X (2022) Microstructure understanding of high Cr–Ni austenitic steel corrosion in high-temperature steam. Acta Mater 226:117634

    Article  CAS  Google Scholar 

  14. Shen Z, Zeng X, Wu S, Yu H, Jenkins BM, Karamched P (2023) The origin of different morphology of internal oxide precipitates in ferritic and austenitic steels. J Mater Sci Technol 161:88–100

    Article  CAS  Google Scholar 

  15. Cao D, Xu T, Zhang M, Wang Z, Griffith DT, Roy S (2024) Strengthening sandwich composites by laminating ultra-thin oriented carbon nanotube sheets at the skin/core interface. Compos Part B-Eng 280:111496

    Article  CAS  Google Scholar 

  16. Henaish AM, Darwish MA, Hemeda OM, Weinstein IA, Soliman TS, Trukhanov AV (2023) Structure and optoelectronic properties of ferroelectric PVA-PZT nanocomposites. Opt Mater 138:113402

    Article  CAS  Google Scholar 

  17. Cao D (2024) Mechanical enhancement of natural-fiber-reinforced composites modified with recycled thermoset composite fillers. J Reinf Plast Comp. https://doi.org/10.1177/07316844241247896

  18. Trukhanov AV, Tishkevich DI, Podgornaya SV, Kaniukov E, Darwish MATrukhanov SV, (2022) Impact of the nanocarbon on magnetic and electrodynamic properties of the Ferrite/polymer composites. Nanomaterials 5:2079–4991

    Google Scholar 

  19. Zhao Y, Shen Z, Wang Z, Zhang K, Gao S, Wu L (2023) Growth kinetics and microstructure characteristics of the Zr–Cr interlayer in a Cr-coated Zry-4 alloy exposed to high-temperature steam. Corros Sci 225:111600

    Article  CAS  Google Scholar 

  20. Zhang CY, Li W, Liu C, Zhang CF, Cao L, Kong DB, Chen SG (2022) Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings. J Colloid Interface Sci 608:1025–1039. https://doi.org/10.1016/j.jcis.2021.10.024

    Article  CAS  PubMed  Google Scholar 

  21. Li SC, Xu YJ, Xiang FQ, Liu P, Wang HB, Wei WR, Dong SH (2023) Enhanced corrosion resistance of self-healing waterborne polyurethane coating based on tannic acid modified cerium - montmorillonites composite fillers. Prog Org Coat 178:107454

    Article  CAS  Google Scholar 

  22. Esmailzadeh M, Tammari E, Safarpour T, Razavian SM (2024) Anti-corrosion effect of chitin and chitosan nanoparticles in epoxy coatings. Mater Chem Phys 317:129097

    Article  CAS  Google Scholar 

  23. Huang J, Yang M, Zhu W, Tang K, Zhang H, Chen J (2022) Extrusion-free fabrication of zinc-rich powder coatings: press bonding. Chem Eng J 442:135925

    Article  CAS  Google Scholar 

  24. Huang JB, Yang M, Zhu WH, Tang KY, Chen J, Zhang HP, Zhu JS (2024) Zinc-rich polyester powder coatings with iron phosphide: lower zinc content and higher corrosion resistance. J Ind Eng Chem 133:577–587

    Article  CAS  Google Scholar 

  25. Li PH, Lu Z, Ma KX, Zou GF, Chang L, Guo WC, Wang HY (2022) UV-triggered self-healing SiO2/PDA hybrid microcapsules with both enhanced UV-shielding ability and improved compatibility for epoxy resin coating. Prog Org Coat 163:106636

    Article  CAS  Google Scholar 

  26. Cheng L, Liu CB, Zhao HC, Wang LP (2021) Photothermal-triggered shape memory coatings with active repairing and corrosion sensing properties. J Mater 9:22509–22521

    CAS  Google Scholar 

  27. Wang JK, Ma LW, Guo X, Wu SH, Liu T, Yang JZ, Zhang DW (2022) Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating. Chem Eng J 433:134515

    Article  CAS  Google Scholar 

  28. Zhao SJ, Chen CT, Nishijima M, Haga M, Ueshima M, Suzuki H, Suganuma K (2024) Self-assembled layer as an effective way to block copper diffusion into epoxy. Mater Lett 367:136589

    Article  CAS  Google Scholar 

  29. Zhou ZY, Pourhashem S, Wang ZQ, Duan JZ, Zhang RY, Hou BR (2022) Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings. Chem Eng J 439:135765

    Article  CAS  Google Scholar 

  30. Wang JX, Yang H, Meng Z, Xie BQ, Yu XR, Su GS, Wang L (2022) Epoxy coating with excellent anticorrosion and pH—responsive performances based on DEAEMA modified mesoporous silica nanomaterials. Colloid Surface A 634:127951

    Article  CAS  Google Scholar 

  31. Tian HL, Du WB, Zhan YC, Tian LM, Zhao J, Sun JY (2023) Corrosion resistance and antifouling bioinspired coating with doped polyaniline and TO@CA self-healing nanocapsules. J Bionic Eng 20:2826–2839. https://doi.org/10.1007/s42235-023-00420-3

    Article  Google Scholar 

  32. Salaluk S, Jiang S, Viyanit E, Rohwerder M, Landfester K, Crespy D (2021) Design of nanostructured protective coatings with a sensing function. ACS Appl Mater 13:53046–53054. https://doi.org/10.1021/acsami.1c14110

    Article  CAS  Google Scholar 

  33. Gu WC, Li WB, Zhang Y, Xia YG, Wang QL, Wang W, Zhang YF (2023) Ultra-durable superhydrophobic cellular coatings. Nat Commun 14:5953. https://doi.org/10.1038/s41467-023-41675-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu KY, Chen YX, Luo J, Liu R, Sun GQ, Liu XY (2021) Preparation of dual-chamber microcapsule by pickering emulsion for self-healing application with ultra-high healing efficiency. J Colloid Interface Sci 600:660–669. https://doi.org/10.1016/j.jcis.2021.05.066

    Article  CAS  PubMed  Google Scholar 

  35. Chen ZH, Scharnagl N, Zheludkevich ML, Ying HJ, Yang WZ (2023) Micro/nanocontainer—based intelligent coatings: synthesis, performance and applications–A review. Chem Eng J 451:138582

    Article  CAS  Google Scholar 

  36. Liu CB, Cheng L, Cui LY, Qian B, Zeng RC (2022) Corrosion self-diagnosing and self-repairing polymeric coatings based on zeolitic imidazolate framework decorated hydroxyapatite nanocontainer on steel. Chem Eng J 431:133476

    Article  CAS  Google Scholar 

  37. Sun JY, Wang YM, Li N, Tian LM (2019) Tribological and anticorrosion behavior of self-healing coating containing nanocapsules. Tribol Int 136:332–341. https://doi.org/10.1016/j.triboint.2019.03.062

    Article  CAS  Google Scholar 

  38. Harsha YM, Mohana KNS, Sunilkumar MC, Hithesh MC, Sreelakshmi M, Madhusudhana AM (2024) Syntheses of diphenolic resin based anti-corrosion coating material and reinforce its performance through MWCNT-Ag and MWCNT-Ag/PANI nanofillers. Surf Coat Technol 485:130871

    Article  CAS  Google Scholar 

  39. Wang H, Zhang ZH, Hu ZY, Wang FC, Li SL, Korznikov E, Kang Z (2016) Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes. Sci Rep 6:2045–2322

    Google Scholar 

  40. Mohan K, Rajmohan T (2018) Effects of MWCNT on mechanical properties of glass-flax fiber reinforced nano composites. Mater Today 5:11628–11635

    CAS  Google Scholar 

  41. Song RX, Zhang SH, He Y, Li HJ, Fan Y, He T, Zhang HL (2021) Effect of H-MWCNTs addition on anti-corrosion performance and mechanical character of Ni-Cu/H-MWCNTs composite coatings prepared by pulse electrodeposition technique. Colloid Surf A 630:127915

    Article  Google Scholar 

  42. Wang CY, Wu MP, Wang YY, Wang JY, Wen Z, Wei WT, Miao XJ (2023) Effect of Al2O3-MWCNTs on anti-corrosion behavior of inorganic phosphate coating in high-temperature marine environment. Surf Coat Technol 473:130039

    Article  CAS  Google Scholar 

  43. Cui MJ, Ren SM, Qiu SH, Zhao HC, Wang LP, Xue QJ (2018) Non-covalent functionalized multi-wall carbon nanotubes filled epoxy composites: effect on corrosion protection and tribological performance. Surf Coat Technol 340:74–85. https://doi.org/10.1016/j.surfcoat.2018.02.045

    Article  CAS  Google Scholar 

  44. Naveen V, Abhijit P, Deshpande SR (2020) Self-healing microcapsules encapsulated with carbon nanotubes for improved thermal and electrical properties. RSC Adv 10:33178–33188. https://doi.org/10.1039/D0RA06631A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hosseinpour A, Abadchi MR, Mirzaee M, Tabar FA, Ramezanzadeh B (2021) Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surf Interfaces 23:100994

    Article  CAS  Google Scholar 

  46. Choi S, Park J, Kang D, Lee SE (2023) MWCNT-Coated glass fabric/phenol composite heating panel fabricated by resin infusion process. Polymers 15:3353. https://doi.org/10.3390/polym15163353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yalcinkaya M, Altan M, Icduygu M, Youssef K (2019) Three-dimensional nano-morphology of carbon nanotube/epoxy filled poly (methyl methacrylate) microcapsules. Materials 12:1387. https://doi.org/10.3390/ma12091387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adeel M, Ren LF, Li J, Shao J, Jawad A, Su C, He Y (2019) Enhanced mechanical properties of PDMS/PMMA composite membrane using MWCNTs and its application in phenol separation from saline wastewater. J Appl Polym 136:47123. https://doi.org/10.1002/app.47123

    Article  CAS  Google Scholar 

  49. Nemeth K, Varro N, Reti B, Berki P, Adam B, Belina K, Hernadi K (2019) Synthesis and investigation of SiO2-MgO coated MWCNTs and their potential application. Sci Rep 9:15113. https://doi.org/10.1038/s41598-019-51745-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al-Bahrani M, Graham-Jones J, Gombos Z, Al-Ani A, Cree A (2020) High-efficient multifunctional self-heating nanocomposite-based MWCNTs for energy applications. Int J Energy Res 44:1113–1124. https://doi.org/10.1002/er.4999

    Article  CAS  Google Scholar 

  51. Kotelnikova A, Zubar T, Vershinina T, Panasyuk M, Kanafyev O, Trukhanov A (2022) The influence of saccharin adsorption on NiFe alloy film growth mechanisms during electrodeposition. RSC Adv 12:35722–35729. https://doi.org/10.1039/D2RA07118E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thinkohkaew K, Jonjaroen V, Niamsiri N, Panya A, Suppavorasatit I, Potiyaraj P (2024) Microencapsulation of probiotics in chitosan-coated alginate/gellan gum: optimization for viability and stability enhancement. Food Hydrocolloid 151:109788

    Article  CAS  Google Scholar 

  53. Liu YP, Zhan YC, Tian LM, Zhao J, Sun JY (2024) Study on the anticorrosion and antifouling performance of magnetically responsive self-healing polyurethane coatings. Prog Org Coat 186:108047

    Article  CAS  Google Scholar 

  54. Peng WW, Yan XX (2022) Preparation of tung oil microcapsule and its effect on wood surface coating. Polymers 14:1536. https://doi.org/10.3390/polym14081536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nawaz M, Shakoor RA, Al-Qahtani N, Bhadra J, Al-Thani NJ, Kahraman R (2024) Polyolefin-based smart self-healing composite coatings modified with calcium carbonate and sodium alginate. Polymers 16:636. https://doi.org/10.3390/polym16050636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trukhanov SV (2005) Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ (0 ≤ g ≤ 0.25). J Exp Theor Phys 100:95–105. https://doi.org/10.1134/1.1866202

    Article  CAS  Google Scholar 

  57. Migas DB, Turchenko VA, Rutkauskas AV, Trukhanov SV, Zubar TI, Skorodumova NV (2023) Temperature induced structural and polarization features in BaFe12O19. J Mater 11:12406–12414

    CAS  Google Scholar 

  58. Trukhanov SV (2005) Investigation of stability of ordered manganites. J Exp Theor Phys 101:513–520. https://doi.org/10.1134/1.2103220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young and Middle-aged Technology Innovation Leading Talents, and the Team Projects of Science and Technology Development Plan of Jilin Province (20230508041RC). Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23E050007.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization contributed by Y.P.L., Y.Y.Z., J.Y.S. Methodology contributed by Y.P.L., Y.Y.Z. Data Analysis contributed by Y.P.L. Investigation contributed by Y.P.L., Y.Y.Z., L.M.T., J.Z. Supervision contributed by J.Y.S. Writing - Original draft preparation contributed by Y.P.L., Y.Y.Z. Writing - Reviewing and Editing contributed by J.Y.S.

Corresponding author

Correspondence to Jiyu Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, Y., Tian, L. et al. Intelligent anti-corrosion coating with self-healing capability and superior mechanical properties. J Mater Sci 59, 16749–16767 (2024). https://doi.org/10.1007/s10853-024-10175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10175-9

Navigation