Skip to main content
Log in

Development of functional construction materials from cement–reduced graphene oxide composite capable of generating electricity with improved mechanical strength

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have developed a functional construction material from a cement material that can scavenge mechanical energy from surrounding environment into electricity. An energy harvesting device called “a triboelectric nanogenerator (TENG)” is fabricated from the cement–reduced graphene oxide (rGO) composite to convert mechanical energy into electrical power. The incorporation of rGO in cement is found to enhance the electrical output of the TENG through space charge polarization, resulting in the increase in triboelectric charge density. The maximum power density achieved from the cement–rGO composite TENG is 1.72 W/m2, which is six times greater than that of the unmodified cement TENG. Additionally, rGO improves the compressive strength of the cement composite by up to 50%. This enhancement is attributed to the large specific surface area of rGO, which creates nucleation sites, resulting in increased crystallization of cement hydration products. The findings of this work highlight the promising prospects for the development of functional construction material for smart energy building with improved mechanical strength.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data will be made available from the corresponding author on reasonable request.

References

  1. Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss 176:447–458. https://doi.org/10.1039/C4FD00159A

    Article  CAS  PubMed  Google Scholar 

  2. Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114. https://doi.org/10.1021/nl300988z

    Article  CAS  PubMed  Google Scholar 

  3. Yao G, Kang L, Li J et al (2018) Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun 9(1):5349. https://doi.org/10.1038/s41467-018-07764-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu L, Wu H, Yao G et al (2018) Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12(10):10262–10271. https://doi.org/10.1021/acsnano.8b05359

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z, Nie J, Miao B et al (2019) Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv Mater 31(12):1807795. https://doi.org/10.1002/adma.201807795

    Article  CAS  Google Scholar 

  6. Li H, Zhang Z, Ding J et al (2019) Diamond-like carbon structure-doped carbon dots: a new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes. Carbon 149:342–349. https://doi.org/10.1016/j.carbon.2019.04.074

    Article  CAS  Google Scholar 

  7. Gu GQ, Han CB, Lu CX et al (2017) Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 11(6):6211–6217. https://doi.org/10.1021/acsnano.7b02321

    Article  CAS  PubMed  Google Scholar 

  8. Lai YC, Hsiao YC, Wu HM, Wang ZL (2019) Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci 6(5):1801883. https://doi.org/10.1002/advs.201801883

    Article  CAS  Google Scholar 

  9. Anaya DV, Zhan K, Tao L, Lee C, Yuce MR, Alan T (2021) Contactless tracking of humans using non-contact triboelectric sensing technology: enabling new assistive applications for the elderly and the visually impaired. Nano Energy 90:106486. https://doi.org/10.1016/j.nanoen.2021.106486

    Article  CAS  Google Scholar 

  10. Shi Q, Zhang Z, He T et al (2020) Deep learning enabled smart mats as a scalable floor monitoring system. Nat Commun 11(1):4609. https://doi.org/10.1038/s41467-020-18471-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma J, Jie Y, Bian J, Li T, Cao X, Wang N (2017) From triboelectric nanogenerator to self-powered smart floor: a minimalist design. Nano Energy 39:192–199. https://doi.org/10.1016/j.nanoen.2017.06.025

    Article  CAS  Google Scholar 

  12. He C, Zhu W, Chen B et al (2017) Smart floor with integrated triboelectric nanogenerator as energy harvester and motion sensor. ACS Appl Mater Interfaces 9(31):26126–26133. https://doi.org/10.1021/acsami.7b08526

    Article  CAS  PubMed  Google Scholar 

  13. Meng N, Ren X, Zhu X et al (2020) Multiscale understanding of electric polarization in poly (vinylidene fluoride)-based ferroelectric polymers. J Mater Chem C 8(46):16436–16442. https://doi.org/10.1039/D0TC04310A

    Article  CAS  Google Scholar 

  14. Gu L, German L, Li T et al (2021) Energy harvesting floor from commercial cellulosic materials for a self-powered wireless transmission sensor system. ACS Appl Mater Interfaces 13(4):5133–5141. https://doi.org/10.1021/acsami.0c20703

    Article  CAS  PubMed  Google Scholar 

  15. Lian M, Sun J, Jiang D et al (2022) Triboelectric nanogenerator self-heating floor–possibility to achieve intelligence in the architecture. J Mater Chem A 10(45):24353–24361. https://doi.org/10.1039/D2TA06942C

    Article  CAS  Google Scholar 

  16. Sun J, Schütz U, Tu K et al (2022) Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy 102:107670. https://doi.org/10.1016/j.nanoen.2022.107670

    Article  CAS  Google Scholar 

  17. Thongthapthai W, Harnchana V, Chanthad C, Amornkitbamrung V, Chindaprasirt P (2021) The fabrication of calcium silicate-natural rubber composite for mechanical energy harvesting. Surf Interfaces 25:101180. https://doi.org/10.1016/j.surfin.2021.101180

    Article  CAS  Google Scholar 

  18. Ra Y, You I, Kim M (2021) Toward smart net zero energy structures: Development of cement-based structural energy material for contact electrification driven energy harvesting and storage. Nano Energy 89:106389. https://doi.org/10.1016/j.nanoen.2021.106389

    Article  CAS  Google Scholar 

  19. Kaewsrithong K, Kaewpoonsuk A, Torkittikul P, Wongkeo W, Chaipanich A, Rianyoi R, Nochaiya T (2023) Boosting the electrical output of cement-based triboelectric nanogenerator by surface treatment technique. J Phys: Conf Ser 2653:012052. https://doi.org/10.1088/1742-6596/2653/1/012052

    Article  Google Scholar 

  20. Sintusiri J, Harnchana V, Amornkitbamrung V, Wongsa A, Chindaprasirt P (2020) Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy 74:104802. https://doi.org/10.1016/j.nanoen.2020.104802

    Article  CAS  Google Scholar 

  21. Kuntharin S, Harnchana V, Sintusiri J et al (2023) Smart triboelectric floor based on calcium silicate-carbon composite for energy harvesting and motion sensing applications. Sens Actuators, A 358:114423. https://doi.org/10.1016/j.sna.2023.114423

    Article  CAS  Google Scholar 

  22. Kuntharin S, Harnchana V, Klamchuen A, Sinthiptharakoon K, Thongbai P, Amornkitbamrung V, Chindaprasirt P (2022) Boosting the power output of a cement-based triboelectric nanogenerator by enhancing dielectric polarization with highly dispersed carbon black nanoparticles toward large-scale energy harvesting from human footsteps. ACS Sustain Chem Eng 10(14):4588–4598. https://doi.org/10.1021/acssuschemeng.1c08629

    Article  CAS  Google Scholar 

  23. Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12(12):6339–6346. https://doi.org/10.1021/nl303573d

    Article  CAS  PubMed  Google Scholar 

  24. Niu S, Wang S, Lin L, Liu Y, Zhou YS, Hu Y, Wang ZL (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6(12):3576–3583. https://doi.org/10.1039/C3EE42571A

    Article  Google Scholar 

  25. Seol M-L, Lee S-H, Han J-W, Kim D, Cho G-H, Choi Y-K (2015) Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17:63–71. https://doi.org/10.1016/j.nanoen.2015.08.005

    Article  CAS  Google Scholar 

  26. Zhou YS, Liu Y, Zhu G, Lin Z-H, Pan C, Jing Q, Wang ZL (2013) In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett 13(6):2771–2776. https://doi.org/10.1021/nl401006x

    Article  CAS  PubMed  Google Scholar 

  27. Burgo TA, Silva CA, Balestrin LB, Galembeck F (2013) Friction coefficient dependence on electrostatic tribocharging. Sci Rep 3(1):2384. https://doi.org/10.1038/srep02384

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shin SH, Bae YE, Moon HK et al (2017) Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 11(6):6131–6138. https://doi.org/10.1021/acsnano.7b02156

    Article  CAS  PubMed  Google Scholar 

  29. Nie S, Cai C, Lin X, Zhang C, Lu Y, Mo J, Wang S (2020) Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain Chem Eng 8(50):18678–18685. https://doi.org/10.1021/acssuschemeng.0c07531

    Article  CAS  Google Scholar 

  30. Liu Y, Mo J, Fu Q, Lu Y, Zhang N, Wang S, Nie S (2020) Enhancement of triboelectric charge density by chemical functionalization. Adv Func Mater 30(50):2004714. https://doi.org/10.1002/adfm.202004714

    Article  CAS  Google Scholar 

  31. Niu S, Wang ZL (2015) Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–192. https://doi.org/10.1016/j.nanoen.2014.11.034

    Article  CAS  Google Scholar 

  32. Li Y, Zhao Z, Liu L et al (2021) Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges. Adv Energy Mater 11(14):2100050. https://doi.org/10.1002/aenm.202100050

    Article  CAS  Google Scholar 

  33. He X, Guo H, Yue X, Gao J, Xi Y, Hu C (2015) Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 7(5):1896–1903. https://doi.org/10.1039/C4NR05512H

    Article  CAS  PubMed  Google Scholar 

  34. Seung W, Yoon HJ, Kim TY et al (2017) Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv Energy Mater 7(2):1600988. https://doi.org/10.1002/aenm.201600988

    Article  CAS  Google Scholar 

  35. Kwon YH, Shin SH, Kim YH, Jung JY, Lee MH, Nah J (2016) Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators. Nano Energy 25:225–231. https://doi.org/10.1016/j.nanoen.2016.05.002

    Article  CAS  Google Scholar 

  36. Kim J, Ryu H, Lee JH, Khan U, Kwak SS, Yoon HJ, Kim SW (2020) High permittivity CaCu3Ti4O12 particle-induced internal polarization amplification for high performance triboelectric nanogenerators. Adv Energy Mater 10(9):1903524. https://doi.org/10.1002/aenm.201903524

    Article  CAS  Google Scholar 

  37. Kang X, Pan C, Chen Y, Pu X (2020) Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv 10(30):17752–17759. https://doi.org/10.1039/D0RA02181D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Guo H, He X, Liu G, Xi Y, Shi H, Hu C (2016) Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl Mater Interfaces 8(1):736–744. https://doi.org/10.1021/acsami.5b09907

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Shi M, Zhu K et al (2016) High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale 8(43):18489–18494. https://doi.org/10.1039/C6NR06319E

    Article  CAS  PubMed  Google Scholar 

  40. Chun J, Kim JW, Jung WS, Kang CY, Kim SW, Wang ZL, Baik JM (2015) Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ Sci 8(10):3006–3012. https://doi.org/10.1039/C5EE01705J

    Article  CAS  Google Scholar 

  41. Hutagalung SD, Sahrol NH, Ahmad ZA, Ain MF, Othman M (2012) Effect of MnO2 additive on the dielectric and electromagnetic interference shielding properties of sintered cement-based ceramics. Ceram Int 38(1):671–678. https://doi.org/10.1016/j.ceramint.2011.07.055

    Article  CAS  Google Scholar 

  42. Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Ngamjarurojana A, Chaipanich A (2011) Dielectric and ferroelectric properties of 1–3 barium titanate–Portland cement composites. Curr Appl Phys 11(3):S48–S51. https://doi.org/10.1016/j.cap.2011.03.010

    Article  Google Scholar 

  43. Terzić A, Paunović V, Stojanović J (2024) Effect of the titanium-dioxide addition on the structural, dielectric, and mechanical properties of different cement-based mortars with corundum aggregate. Constr Build Mater 412:134847. https://doi.org/10.1016/j.conbuildmat.2023.134847

    Article  CAS  Google Scholar 

  44. Zhang L, Li L, Wang Y, Yu X, Han B (2020) Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler. Constr Build Mater 238:117787. https://doi.org/10.1016/j.conbuildmat.2019.117787

    Article  CAS  Google Scholar 

  45. Yuan MZ, Zhang JR, Yang LZ, Fang EQ, Li ZJ, Ren H (2015) Processing method and property study for cement-based piezoelectric composites and sensors. Mater Res Innov 19(1):S1-134-S1-138. https://doi.org/10.1179/1432891715Z.0000000001389

    Article  CAS  Google Scholar 

  46. Kim YJ, Lee J, Park S, Park C, Park C, Choi HJ (2017) Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv 7(78):49368–49373. https://doi.org/10.1039/C7RA07274K

    Article  CAS  Google Scholar 

  47. Park W, Hu J, Jauregui LA, Ruan X, Chen YP (2014) Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Appl Phys Lett 104:11. https://doi.org/10.1063/1.4869026

    Article  CAS  Google Scholar 

  48. Wang X, Bai H, Yao Z, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20(41):9032–9036. https://doi.org/10.1039/C0JM01852J

    Article  CAS  Google Scholar 

  49. Asgharzadeh H, Eslami S (2019) Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J Alloy Compd 806:553–565. https://doi.org/10.1016/j.jallcom.2019.07.183

    Article  CAS  Google Scholar 

  50. Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly (methyl methacrylate)(PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces 4(5):2630–2636. https://doi.org/10.1021/am300297j

    Article  CAS  PubMed  Google Scholar 

  51. Zheng N, Song Y, Wang L, Gao JF, Wang Y, Dong X (2019) Improved electrical and mechanical properties for the reduced graphene oxide-decorated polymer nanofiber composite with a core–shell structure. Ind Eng Chem Res 58(34):15470–15478. https://doi.org/10.1021/acs.iecr.9b01766

    Article  CAS  Google Scholar 

  52. Jiang H, Lei H, Wen Z et al (2020) Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy 75:105011. https://doi.org/10.1016/j.nanoen.2020.105011

    Article  CAS  Google Scholar 

  53. Roy S, Kim J (2019) Synergistic effect of polydopamine–polyethylenimine copolymer coating on graphene oxide for EVA nanocomposites and high-performance triboelectric nanogenerators. Nanoscale Adv 1(6):2444–2453. https://doi.org/10.1039/C9NA00142E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parvez AN, Rahaman MH, Kim HC, Ahn KK (2019) Optimization of triboelectric energy harvesting from falling water droplet onto wrinkled polydimethylsiloxane-reduced graphene oxide nanocomposite surface. Compos B Eng 174:106923. https://doi.org/10.1016/j.compositesb.2019.106923

    Article  CAS  Google Scholar 

  55. Harnchana V, Ngoc HV, He W, Rasheed A, Park H, Amornkitbamrung V, Kang DJ (2018) Enhanced power output of a triboelectric nanogenerator using poly (dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl Mater Interfaces 10(30):25263–25272. https://doi.org/10.1021/acsami.8b02495

    Article  CAS  PubMed  Google Scholar 

  56. Madbouly AI, Mokhtar MM, Morsy MS (2020) Evaluating the performance of rGO/cement composites for SHM applications. Constr Build Mater 250:118841. https://doi.org/10.1016/j.conbuildmat.2020.118841

    Article  CAS  Google Scholar 

  57. Murugan M, Santhanam M, Gupta SS, Pradeep T, Shah SP (2016) Influence of 2D rGO nanosheets on the properties of OPC paste. Cement Concr Compos 70:48–59. https://doi.org/10.1016/j.cemconcomp.2016.03.005

    Article  CAS  Google Scholar 

  58. Gholampour A, Valizadeh Kiamahalleh M, Tran DN, Ozbakkaloglu T, Losic D (2017) From graphene oxide to reduced graphene oxide: impact on the physiochemical and mechanical properties of graphene–cement composites. ACS Appl Mater Interfaces 9(49):43275–43286. https://doi.org/10.1021/acsami.7b16736

    Article  CAS  PubMed  Google Scholar 

  59. Kiamahalleh MV, Gholampour A, Tran DN, Ozbakkaloglu T, Losic D (2020) Physiochemical and mechanical properties of reduced graphene oxide–cement mortar composites: effect of reduced graphene oxide particle size. Constr Build Mater 250:118832. https://doi.org/10.1016/j.conbuildmat.2020.118832

    Article  CAS  Google Scholar 

  60. Qureshi TS, Panesar DK (2020) Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Compos Part B: Eng 197:108063. https://doi.org/10.1016/j.compositesb.2020.108063

    Article  CAS  Google Scholar 

  61. Lin Y, Du H (2020) Graphene reinforced cement composites: a review. Constr Build Mater 265:120312. https://doi.org/10.1016/j.conbuildmat.2020.120312

    Article  CAS  Google Scholar 

  62. Phrompet C, Sriwong C, Ruttanapun C (2019) Mechanical, dielectric, thermal and antibacterial properties of reduced graphene oxide (rGO)-nanosized C3AH6 cement nanocomposites for smart cement-based materials. Compos B Eng 175:107128. https://doi.org/10.1016/j.compositesb.2019.107128

    Article  CAS  Google Scholar 

  63. Lee MJ, Ahn JH, Sung JH et al (2016) Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat Commun 7(1):1–7. https://doi.org/10.1038/ncomms12011

    Article  CAS  Google Scholar 

  64. Qureshi TS, Panesar DK (2019) Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Constr Build Mater 206:71–83. https://doi.org/10.1016/j.conbuildmat.2019.01.176

    Article  CAS  Google Scholar 

  65. Zhang Q, Sun H, Liu W et al (2021) Effect of rGO on the mechanical strength, hydration and micromorphology of cement incorporated silica fume. Constr Build Mater 300:124325. https://doi.org/10.1016/j.conbuildmat.2021.124325

    Article  CAS  Google Scholar 

  66. Zhang N, She W, Du F, Xu K (2020) Experimental study on mechanical and functional properties of reduced graphene oxide/cement composites. Materials 13(13):3015. https://doi.org/10.3390/ma13133015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arbatti M, Shan X, Cheng ZY (2007) Ceramic–polymer composites with high dielectric constant. Adv Mater 19(10):1369–1372. https://doi.org/10.1002/adma.200601996

    Article  CAS  Google Scholar 

  68. Deepa KS, NishaS K, Parameswaran P, Sebastian MT, James J (2009) Effect of conductivity of filler on the percolation threshold of composites. Appl Phys Lett 94:14. https://doi.org/10.1063/1.3115031

    Article  CAS  Google Scholar 

  69. Yang X, Hu J, Chen S, He J (2016) Understanding the percolation characteristics of nonlinear composite dielectrics. Sci Rep 6(1):30597. https://doi.org/10.1038/srep30597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11):9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  PubMed  Google Scholar 

  71. Maamer B, Boughamoura A, El-Bab AMF, Francis LA, Tounsi F (2019) A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers Manag 199:111973. https://doi.org/10.1016/j.enconman.2019.111973

    Article  Google Scholar 

  72. Sun QJ, Lei Y, Zhao XH et al (2021) Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy 80:105521. https://doi.org/10.1016/j.nanoen.2020.105521

    Article  CAS  Google Scholar 

  73. Li GZ, Wang GG, Ye DM et al (2019) High-performance transparent and flexible triboelectric nanogenerators based on PDMS-PTFE composite films. Adv Electr Mater 5(4):1800846. https://doi.org/10.1002/aelm.201800846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Research Council of Thailand (NRCT) (Grant No. N41A640143); the Research and Graduate Studies, Khon Kaen University; the Fundamental Fund of Khon Kaen University, National Science, Research and Innovation Fund (NSRF); the Basic Research Fund, Khon Kaen University.

Funding

This study was funded by National Research Council of Thailand, N41A640143, Viyada Harnchana, Khon Kean University, Fundamental Fund of Khon Kaen University, Viyada Harnchana.

Author information

Authors and Affiliations

Authors

Contributions

Jirapan Sintusiri was involved in the validation, methodology, formal analysis, investigation, and writing—original draft; Pemika Hongsrichan, Phanupong Boonsri, and Phitthayathon Tongjune contributed to the investigation; Chaval Sriwong and Chesta Ruttanapun contributed to the resources. Prasit Thongbai participated in the validation; Viyada Harnchana was involved in the conceptualization, methodology, validation, writing—original draft, and writing—review and editing.

Corresponding author

Correspondence to Viyada Harnchana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49880 KB)

Supplementary file2 (mp4 18471 KB)

Supplementary file3 (mp4 36078 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sintusiri, J., Hongsrichan, P., Boonsri, P. et al. Development of functional construction materials from cement–reduced graphene oxide composite capable of generating electricity with improved mechanical strength. J Mater Sci 59, 16568–16582 (2024). https://doi.org/10.1007/s10853-024-10165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10165-x

Navigation