Skip to main content
Log in

Non-magnetic hollow ZnO/C fabricated by a novel ZnO self-sacrificial template hollow engineering for efficient microwave absorption

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The derivatives of metal–organic frameworks have been proven to be ideal candidates for microwave absorption due to their ability to form diverse microstructures of metals/heteroatom doped-carbon composites. In this study, we synthesized three types of zinc oxide (ZnO)@ZIF-8 with varying ZIF-8 shell thicknesses using ZnO colloidal spheres as sacrificial templates. Subsequently, we investigated the microwave absorption properties of a series of non-magnetic ZnO/N-doped carbon nanospheres pyrolyzed by ZnO@ZIF-8 at different temperatures. Remarkably, the non-magnetic samples (30 wt% filler loading) with a hollow structure pyrolyzed at 800 °C exhibited a broad effective absorption band exceeding 6 GHz. The excellent microwave absorbing performance of the samples pyrolyzed at 800 °C can be attributed to the reduction of the ZnO core to Zn0, anchoring it in the graphitized N-carbon layer, and the formation of an inner hollow cavity that enhances impedance matching. Therefore, this research not only provides an array of excellent dielectric-type microwave absorbing materials but also presents a novel strategy for developing lightweight and high-performance non-magnetic carbon-based microwave absorbing materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wan S, Li X, Chen Y, Liu N, Du Y, Dou S, Jiang L, Cheng Q (2021) High-strength scalable MXene films through bridging-induced densification. Science 374:96–99

    Article  CAS  PubMed  Google Scholar 

  2. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    Article  CAS  PubMed  Google Scholar 

  3. Cao M-S, Wang X-X, Zhang M, Shu J-C, Cao W-Q, Yang H-J, Fang X-Y, Yuan J (2019) Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater 29:1807398

    Article  Google Scholar 

  4. Frey AH (1962) Human auditory system response to modulated electromagnetic energy. J Appl Physiol 17:689–692

    Article  CAS  PubMed  Google Scholar 

  5. Boice JD Jr, Tarone RE (2011) Cell phones, cancer, and children. JNCI J Natl Cancer Inst 103:1211–1213

    Article  PubMed  Google Scholar 

  6. Micheli D, Pastore R, Apollo C, Marchetti M, Gradoni G, Primiani VM, Moglie F (2011) Broadband electromagnetic absorbers using carbon nanostructure-based composites. Ieee Trans Microw Theory Tech 59:2633–2646

    Article  CAS  Google Scholar 

  7. Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927

    Article  CAS  Google Scholar 

  8. Meng F, Wang H, Huang F, Guo Y, Wang Z, Hui D, Zhou Z (2018) Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B-Eng 137:260–277

    Article  CAS  Google Scholar 

  9. Wei H, Zhang Z, Hussain G, Zhou L, Li Q, Ostrikov K (2020) Techniques to enhance magnetic permeability in microwave absorbing materials. Appl Mater Today 19:100596

    Article  Google Scholar 

  10. Cai H, Feng C, Xiao H, Cheng B (2022) Synthesis of Fe3O4/rGO@PANI with three-dimensional flower-like nanostructure and microwave absorption properties. J Alloys Compd 893:162227

    Article  CAS  Google Scholar 

  11. Li Y, Meng F, Mei Y, Wang H, Guo Y, Wang Y, Peng F, Huang F, Zhou Z (2020) Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem Eng J 391:123512

    Article  CAS  Google Scholar 

  12. Wang L, Yu X, Li X, Zhang J, Wang M, Che R (2020) MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem Eng J 383:123099

    Article  CAS  Google Scholar 

  13. Wang P, Wang G, Zhang J, Duan B, Zheng L, Zhang S, He D, Wang T (2020) Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band. Chem Eng J 382:122804

    Article  CAS  Google Scholar 

  14. Geng H, Zhang X, Xie W, Zhao P, Wang G, Liao J, Dong L (2022) Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J Colloid Interface Sci 609:33–42

    Article  CAS  PubMed  Google Scholar 

  15. Wu Q, Wang J, Jin H, Dong Y, Huo S, Yang S, Su X, Zhang B (2020) Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption. Compos Sci Technol 195:108206

    Article  CAS  Google Scholar 

  16. Shi X, Liu Z, Li X, You W, Shao Z, Che R (2021) Enhanced dielectric polarization from disorder-engineered Fe3O4@ black TiO2-x heterostructure for broadband microwave absorption. Chem Eng J 419:130020

    Article  CAS  Google Scholar 

  17. Zhang Z, Cai Z, Wang Z, Peng Y, Xia L, Ma S, Yin Z, Huang Y (2021) A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett 13:56

    Article  CAS  Google Scholar 

  18. Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BVKJ, Wuttke S (2020) Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev 49:3348–3422

    Article  CAS  PubMed  Google Scholar 

  19. Shu J-C, Cao W-Q, Cao M-S (2021) Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv Funct Mater 31:2100470

    Article  CAS  Google Scholar 

  20. Wang C, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J, Yamauchi Y (2020) New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6:19–40

    Article  CAS  Google Scholar 

  21. Huang M, Wang L, You W, Che R (2021) Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 17:2101416

    Article  CAS  Google Scholar 

  22. Feng W, Wang Y, Zou Y, Chen J, Jia D, Zhou Y (2018) ZnO @ N-doped porous carbon/Co3ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem Eng J 342:364–371

    Article  CAS  Google Scholar 

  23. Xiang Z, Song Y, Xiong J, Pan Z, Wang X, Liu L, Liu R, Yang H, Lu W (2019) Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 142:20–31

    Article  CAS  Google Scholar 

  24. Lü Y, Wang Y, Li H, Lin Y, Jiang Z, Xie Z, Kuang Q, Zheng L (2015) MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl Mater Interfaces 7:13604–13611

    Article  PubMed  Google Scholar 

  25. Jin L, Yi P, Wan L, Hou J, Chen P, Zu J, Wei B, Yao Z, Zhou J (2022) Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem Eng J 427:130940

    Article  CAS  Google Scholar 

  26. Yu J, Yu J, Ying T, Liu X, Zhang X, Han D (2020) Zeolitic imidazolate framework derived Fe-N/C for efficient microwave absorbers. J Alloys Compd 838:155629

    Article  CAS  Google Scholar 

  27. Jiao Y, Li J, Xie A, Wu F, Zhang K, Dong W, Zhu X (2019) Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos Sci Technol 174:232–240

    Article  CAS  Google Scholar 

  28. Gao Z, Ma Z, Lan D, Zhao Z, Zhang L, Wu H, Hou Y (2022) Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv Funct Mater 32:2112294

    Article  CAS  Google Scholar 

  29. Liu J, Zhang L, Zang D, Wu H (2021) A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv Funct Mater 31:2105018

    Article  CAS  Google Scholar 

  30. Han M, Yin X, Kong L, Li M, Duan W, Zhang L, Cheng L (2014) Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2:16403–16409

    Article  CAS  Google Scholar 

  31. Wang L, Li X, Li Q, Yu X, Zhao Y, Zhang J, Wang M, Che R (2019) Oriented polarization tuning broadband absorption from flexible hierarchical zno arrays vertically supported on carbon cloth. Small 15:1900900

    Article  Google Scholar 

  32. Jezequel D, Guenot J, Jouini N, Fievet F (1994) Preparation and morphological characterization of fine, spherical, monodisperse particles of ZnO. Mater Sci Forum 152–153:339–342

    Article  Google Scholar 

  33. Lin L, Zhang T, Liu H, Qiu J, Zhang X (2015) In situ fabrication of a perfect Pd/ZnO@ZIF-8 core–shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy. Nanoscale 7:7615–7623

    Article  CAS  PubMed  Google Scholar 

  34. Seelig EW, Tang B, Yamilov A, Cao H, Chang RPH (2003) Self-assembled 3D photonic crystals from ZnO colloidal spheres. Mater Chem Phys 80:257–263

    Article  CAS  Google Scholar 

  35. Yu B, Wang F, Dong W, Hou J, Lu P, Gong J (2015) Self-template synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation. Mater Lett 156:50–53

    Article  CAS  Google Scholar 

  36. Zhan W, Kuang Q, Zhou J, Kong X, Xie Z, Zheng L (2013) Semiconductor@Metal–organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc 135:1926–1933

    Article  CAS  PubMed  Google Scholar 

  37. Sun Y, Zhang Q, Xu X, Zhang L, Wu Z, Guo J, Lu G (2016) ZnO@ZIF core-shell single crystals formed by in situ conversion of ZnO particles. Eur J Inorg Chem 2016:3553–3558

    Article  CAS  Google Scholar 

  38. Yang Q, Yang C-C, Lin C-H, Jiang H-L (2019) Metal–organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew Chem Int Ed 58:3511–3515

    Article  CAS  Google Scholar 

  39. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Ina T, Chen W-T, Shang L, Sun F, Wei S, Sun-Waterhouse D, Telfer SG, Zhang T, Waterhouse GIN (2020) Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci Bull 65:1743–1751

    Article  CAS  Google Scholar 

  41. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z (2012) Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv Mater 24:5593–5597

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J, Li J, Li L, Wei Z (2019) Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed 58:7035–7039

    Article  CAS  Google Scholar 

  43. Cao M, Wang X, Cao W, Fang X, Wen B, Yuan J (2018) Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14:1800987

    Article  Google Scholar 

  44. Zhang H, Jia Z, Wang B, Wu X, Sun T, Liu X, Bi L, Wu G (2021) Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chem Eng J 421:129960

    Article  CAS  Google Scholar 

  45. Li Y, Liu X, Nie X, Yang W, Wang Y, Yu R, Shui J (2019) Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater 29:1807624

    Article  Google Scholar 

  46. Lv H, Yang Z, Wang PL, Ji G, Song J, Zheng L, Zeng H, Xu ZJ (2018) A Voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv Mater 30:1706343

    Article  Google Scholar 

  47. Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7:1602733

    Article  Google Scholar 

  48. Gao Z, Lan D, Zhang L, Wu H (2021) Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv Funct Mater 31:2106677

    Article  CAS  Google Scholar 

  49. Feng W, Wang Y, Chen J, Wang L, Guo L, Ouyang J, Jia D, Zhou Y (2016) Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon 108:52–60

    Article  CAS  Google Scholar 

  50. Yi P, Zhang X, Jin L, Chen P, Tao J, Zhou J, Yao Z (2022) Regulating pyrolysis strategy to construct CNTs-linked porous cubic Prussian blue analogue derivatives for lightweight and broadband microwave absorption. Chem Eng J 430:132879

    Article  CAS  Google Scholar 

  51. Chen F, Zhang S, Ma B, Xiong Y, Luo H, Cheng Y, Li X, Wang X, Gong R (2022) Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem Eng J 431:134007

    Article  CAS  Google Scholar 

  52. Wu Y, Peng K, Man Z, Zang R, Li P, Liu S, Cui Y (2022) A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption. Carbon 188:503–512

    Article  CAS  Google Scholar 

  53. Liang X, Wang G, Gu W, Ji G (2021) Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 177:97–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant No. 51672201).

Author information

Authors and Affiliations

Authors

Contributions

HC Conceptualization and Writing-Original Draft. ZL Methodology, Writing–Review & Editing and Analysis. LG Investigation. CF Software. RT Data curation.

Corresponding author

Correspondence to Haopeng Cai.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data and code availability

No data was used for the research described in the article.

Ethical approval

Not applicable.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Lin, Z., Gao, L. et al. Non-magnetic hollow ZnO/C fabricated by a novel ZnO self-sacrificial template hollow engineering for efficient microwave absorption. J Mater Sci 59, 5371–5386 (2024). https://doi.org/10.1007/s10853-024-09513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09513-8

Navigation