Skip to main content

Advertisement

Log in

Dysprosium doping induced effects on structural, dielectric, energy storage density, and electro-caloric response of lead-free ferroelectric barium titanate ceramics

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work highlights the influence of dysprosium (Dy) doping on structural, dielectric, ferroelectric, energy storage density (ESD) and the electro-caloric(EC) response of solid state synthesized Ba1−xDyxTiO3 (BDT) ceramics with a composition of x varying from 0 to 0.05. The X-ray diffraction and Raman studies suggest that BDT ceramics exhibited pure perovskite tetragonal phase. Scanning electron microscopy (SEM) analysis evidences that Dy doping causes a significant reduction in grain size. The Ba0.99Dy0.01TiO3 ceramics exhibited enhanced dielectric constant and ferroelectric polarization due to the optimum mobility of domains. The temperature-dependent dielectric studies depict that the tetragonal ferroelectric—cubic paraelectric phase transition temperature (Tc) is shifted from 140 to 80 °C as x varies from 0 to 0.05. Further, BDT ceramics are found to be normal ferroelectric at low composition and is of relaxor type at x = 0.05. The Ba0.99Dy0.01TiO3 ceramics exhibited optimum recoverable ESD of 278 mJ/cm3 and an efficiency (η) of 67% at an electric field of 50 kV/cm. Moreover, the values of ESD and η are stable up to 107 cycles and at different operating temperatures ranging from RT to 70 °C. Besides, the Ba0.99Dy0.01TiO3 ceramics demonstrated an enhanced EC effect with an adiabatic temperature change (ΔT) \(\approx\) 1.92 K in the vicinity of Tc at a field of 50 kV/cm and an EC responsivity (ΔT/E) \(\approx\) 0.38 K m/MV compared to other BT based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated in this study appear in the submitted article.

References

  1. Zhang G, Zhang X, Huang H, Wang J, Li Q, Chen LQ, Wang Q (2016) Toward wearable cooling devices: highly flexible electro caloric Ba0.67Sr0.33TiO3 nanowire arrays. Adv Mater 28:4811–4816. https://doi.org/10.1002/adma.201506118

    Article  CAS  Google Scholar 

  2. Uchino K (1994) Relaxor ferroelectric devices. Ferroelectrics 151:321–330. https://doi.org/10.1080/00150199408244756

    Article  CAS  Google Scholar 

  3. Slimani Y, Unal B, Almessiere MA, Hannachi E, Yasin G, Baykal A, Ercan I (2020) Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J Mater Sci Mater Electron 31:7786–7797. https://doi.org/10.1007/s10854-020-03317-7

    Article  CAS  Google Scholar 

  4. Zhou L, Vilarinho PM, Baptista JL (1999) Dependence of the structural and dielectric properties of Ba1–xsrxtio3 ceramic solid solutions on raw material processing. J Eur Ceram Soc 19:2015–2020. https://doi.org/10.1016/S0955-2219(99)00010-2

    Article  CAS  Google Scholar 

  5. Gao J, Xue D, Liu W, Zhou C, Ren X (2017) Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 6:24. https://doi.org/10.3390/act6030024

    Article  Google Scholar 

  6. Hanani Z, Ablouh EH, Mezzane D, Fourcade S, Gouné M (2018) Very-low temperature synthesis of pure and crystalline lead-free Ba.85Ca.15Zr.1Ti.9O3 ceramic. Ceram Int 44(9):10997–11000. https://doi.org/10.1016/j.ceramint.2018.03.022

    Article  CAS  Google Scholar 

  7. Bai Y, Han X, Zheng XC, Qia LJ (2013) Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci Rep 3:02895. https://doi.org/10.1038/srep02895

    Article  Google Scholar 

  8. Bai Y, Ding K, Zheng GP, Shi SQ, Cao JL, Qiao L (2012) The electrocaloric effect around the orthorhombic-tetragonal first-order phase transition in BaTiO3. Aip Adv 2:022162. https://doi.org/10.1063/1.4732146

    Article  CAS  Google Scholar 

  9. Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L, Mathur ND (2013) Giant electrocaloric strength in single-crystal BaTiO3. Adv Mater 25(9):1360–1365

    Article  CAS  Google Scholar 

  10. Lu DY, Toda M, Sugano M (2006) High-permittivity double rare-earth-doped barium titanate ceramics with diffuse phase transition. J Am Ceram Soc 89:3112–3123. https://doi.org/10.1111/j.1551-2916.2006.00893.x

    Article  CAS  Google Scholar 

  11. Petrović MMV, Bobić JD, Ramoška T, Banys J, Stojanović BD (2011) Electrical properties of lanthanum doped barium titanate ceramics. Mater Charact 62:1000–1006. https://doi.org/10.1016/j.matchar.2011.07.013

    Article  CAS  Google Scholar 

  12. Paunovic V, Mitic VV, Prijic Z, Zivkovic L (2014) Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics. Ceram Int 40:4277–4284. https://doi.org/10.1016/j.ceramint.2013.08.092

    Article  CAS  Google Scholar 

  13. Han F, Bai Y, Qiao LJ, Guo D (2016) A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J Mater Chem C 4:1842–1849. https://doi.org/10.1039/C5TC04209G

    Article  CAS  Google Scholar 

  14. Han F, Bai Y, Qiao L, Guo D (2016) Thickness dependence of electrocaloric effect in high-temperature sintered Ba0.8Sr0.2TiO3 ceramics. J Alloys Compd 736:57–61. https://doi.org/10.1016/j.jallcom.2017.11.015

    Article  CAS  Google Scholar 

  15. Jayakrishnan AR, Alex KV, Kamakshi K, Silva JPB, Sekhar KC, Gomes MJM (2019) Enhancing the dielectric relaxor behavior and energy storage properties of 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics through the incorporation of paraelectric SrTiO3. J Mater Sci Mater Electron 30:19374–19382. https://doi.org/10.1007/s10854-019-02299-5

    Article  CAS  Google Scholar 

  16. Liu X, Hong R, Tian C (2009) Tolerance factor and the stability discussion of ABO3-type ilmenite. J Mater Sci Mater Electron 20:323–327. https://doi.org/10.1007/s10854-008-9728-8

    Article  CAS  Google Scholar 

  17. Deng X, Wang X, Wen H, Kang A, Gui Z, Li L (2006) Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(3):1059–1064. https://doi.org/10.1111/j.1551-2916.2005.00836.x

    Article  CAS  Google Scholar 

  18. Jayakrishnan AR, Alex KV, Thomas A, Silva JPB, Kamakshi K, Dabra N, Sekhar KC, Moreira JA, Gomes MJM (2019) Composition-dependent xBa(Zr0.2Ti0.8)O3–(1–x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications. Ceram Int 45:5808–5818. https://doi.org/10.1016/j.ceramint.2018.11.250

    Article  CAS  Google Scholar 

  19. Zhang M, Zhai J, Shen B, Yao X (2011) MgO doping effects on dielectric properties of Ba0.55Sr0.45TiO3 ceramics. J Am Ceram Soc 94:3883–3888. https://doi.org/10.1111/j.1551-2916.2011.04577.x

    Article  CAS  Google Scholar 

  20. Badapanda T, Senthil V, Panigrahi S, Anwar S (2013) Diffuse phase transition behavior of dysprosium doped barium titanate ceramic. J Electroceram 31:55–60. https://doi.org/10.1007/s10832-013-9808-x

    Article  CAS  Google Scholar 

  21. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676. https://doi.org/10.1111/j.1551-2916.2005.00671.x

    Article  CAS  Google Scholar 

  22. Lin JN, Wu TB (1990) Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions. J Appl Phys 68:985–993. https://doi.org/10.1063/1.346665

    Article  CAS  Google Scholar 

  23. Yang WG, Zhang BP, Ma N, Zhao L (2012) High piezoelectric properties of BaTiO3xLiF ceramics sintered at low temperatures. J Eur Ceram Soc 32:899–904. https://doi.org/10.1016/j.jeurceramsoc.2011.10.054

    Article  CAS  Google Scholar 

  24. Picht G, Khansur NH, Webber KG, Kungl H, Hoffmann MJ, Hinterstein M (2020) Grain size effects in donor doped lead zirconate titanate ceramics. J Appl Phys 128:214105. https://doi.org/10.1063/5.0029659

    Article  CAS  Google Scholar 

  25. Morozov MI, Damjanovic D (2010) Charge migration in Pb(Zr, Ti)O3Pb(Zr, Ti)O3 ceramics and its relation to aging, hardening, and softening. J Appl Phys 107:034106. https://doi.org/10.1063/1.3284954

    Article  CAS  Google Scholar 

  26. Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H (2015) Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci Rep 5:9953. https://doi.org/10.1038/srep09953

    Article  CAS  Google Scholar 

  27. Uchino K, Nomura S (1982) Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44:55–61. https://doi.org/10.1080/00150198208260644

    Article  CAS  Google Scholar 

  28. Durdu B, Alver U, Kucukonder A, Söğüt Ö, Kavgacı M (2013) Investigation on zinc selenide and copper selenide thin films produced by chemical bath deposition. Acta Phys Pol A 124(1):41–45. https://doi.org/10.12693/APhysPolA.124.41

    Article  CAS  Google Scholar 

  29. Jayakrishnan AR, Silva JPB, Kamakshi K, Annapureddy V, Mercioniue IF, Sekhar KC (2020) Semiconductor/relaxor 0–3 type composites: a novel strategy for energy storage capacitors. J Sci Adv Mater Dev 6:19–26. https://doi.org/10.1016/j.jsamd.2020.09.012

    Article  CAS  Google Scholar 

  30. Jayakrishnan AR, Silva JPB, Kamakshi K, Dastan D, Annapureddy V, Pereira M, Sekhar KC (2023) Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? Prog Mater Sci 132:101046. https://doi.org/10.1016/j.pmatsci.2022.101046

    Article  CAS  Google Scholar 

  31. Fa Z, Koruza J, Rödel J, Tan X (2018) An ideal amplitude window against electric fatigue in BaTiO3-based lead-free piezoelectric materials. Acta Mater 151:253–259. https://doi.org/10.1016/j.actamat.2018.03.067

    Article  CAS  Google Scholar 

  32. Wu L, Wang X, Gong H, Hao Y, Shen Z, Li L (2015) Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency. J Mater Chem C 3:750–758. https://doi.org/10.1039/C4TC02291B

    Article  CAS  Google Scholar 

  33. Zhan Di, Qing Xu, Huang D-P (2018) Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics. J Phys Chem Solids 114:220–227. https://doi.org/10.1016/j.jpcs.2017.10.038

    Article  CAS  Google Scholar 

  34. Swain AB, Subramanian V, Murugavel P (2018) The role of precursors on piezoelectric and ferroelectric characteristics of 0.5BCT-0.5BZT ceramic. Ceram Int 44:6861–6865. https://doi.org/10.1016/j.ceramint.2018.01.110

    Article  CAS  Google Scholar 

  35. Jayakrishnan AR, Alex KV, Thomas A, Silva JPB, Kamakshi K, Dabra N, Sekhar KC, Agostinho Moreira J, Gomes MJM (2019) Composition-dependent xBa(Zr0.2Ti0.8)O3–(1–x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications. Ceram Int 45(5):5808–5818. https://doi.org/10.1016/j.ceramint.2018.11.250

    Article  CAS  Google Scholar 

  36. Smail S, Benyoussef M, Taïbi K, Bensemma N, Manoun B, Marssi ME, Lahmar A (2020) Structural, dielectric, electrocaloric and energy storage properties of lead free Ba0.975La0.017(ZrxTi0.95–x)Sn0.05O3 (x = 0.05; 0.20) ceramics. Mater Chem Phys 252:123462. https://doi.org/10.1016/j.matchemphys.2020.123462

    Article  CAS  Google Scholar 

  37. Merselmiz S, Hanani Z, Mezzane D, Razumnaya AG, Amjoud M, Hajji L, Terenchuk S, Rozic B, Lukyanchukce IA, Kutnjak Z (2021) Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic. RSC Adv 11:9459–9468. https://doi.org/10.1039/D0RA09707A

    Article  CAS  Google Scholar 

  38. Hanani Z, Merselmiz S, Mezzane D, Amjoud M, Bradesko A, Rozic B, Lahcini M, Marssi ME, Ragulya AV, Luk’yanchuk IA, Kutnjakc Z, Goune M (2020) Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic. RSC Adv 10:30746–30755. https://doi.org/10.1039/D0RA06116F

    Article  CAS  Google Scholar 

  39. Cai W, Zhang Q, Zhou C, Gao R, Zhang S, Li Z, Xu R, Chen G, Deng X, Wang Z, Fu C (2020) Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. J Mater Sci Mater Electron 31:9167–9175. https://doi.org/10.1007/s10854-020-03446-z

    Article  CAS  Google Scholar 

  40. Kiran Kumar NS, Jayakrishnan AR, Silva JPB, Sekhar KC (2023) Effect of MgO doping on energy storage and electrocaloric properties of ferroelectric 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics. Mater Today Commun 35:105754. https://doi.org/10.1016/j.mtcomm.2023.105754

    Article  CAS  Google Scholar 

  41. Merselmiz S, Hanani Z, Mezzane D, Spreitzer M, Bradeško A, Fabijan D, Vengust D, Amjoud M, Hajji L, Abkhar Z, Razumnaya AG, Rožič B, Luk’yanchuk IA, Kutnjak Z (2020) High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic. Ceram Int 46:23867–23876. https://doi.org/10.1016/j.ceramint.2020.06.163

    Article  CAS  Google Scholar 

  42. Zhang XF, Zuo XH, Zhan D, Chen LL, Xiang H (2020) Structure, energy storage properties and dielectric responses of Ba0.95Ca0.05ZrxTi1−xO3 ceramics prepared by a citrate method. J Mater Sci Mater Electron 31:1382–1390. https://doi.org/10.1007/s10854-019-02651-9

    Article  CAS  Google Scholar 

  43. Merselmiz S, Hanani Z, Mezzane D, Razumnaya AG, Amjoud M, Hajji L, Terenchuk S, Rožič B, Luk’yanchuk IA, Kutnjak Z (2021) Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic. RSC Adv 11:9459–9468. https://doi.org/10.1039/D0RA09707A

    Article  CAS  Google Scholar 

  44. Vineetha P, Jose R, Vijay A, Prasanth CS, Saravanan KV (2022) Enhanced relaxor behavior and high energy storage efficiency in niobium substituted (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. Mater Res Express 9:066303. https://doi.org/10.1088/2053-1591/ac7637

    Article  Google Scholar 

  45. Sreenivas PV, Pradhan DK, Indrani C, Neeraj P, Shiva A, Luo S, Katiyar RS, Chrisey DB (2019) Observation of large enhancement in energy-storage properties of lead-free polycrystalline 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 ferroelectric thin films. J Phys D Appl Phys 52:255304. https://doi.org/10.1088/1361-6463/ab161a

    Article  CAS  Google Scholar 

  46. Chen Y, Chen D, Meng L, Wan L, Yao H, Zhai J, Yuan C, Devki NT, Feng ZC (2020) Dielectric and energy storage properties of Bi2O3–B2O3SiO2 doped Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free glass-ceramics. R Soc Open Sci 7:191822. https://doi.org/10.1098/rsos.191822

    Article  CAS  Google Scholar 

  47. Mallick J, Manglam MK, Pradhan LK, Panda SK, Kar M (2022) Electrocaloric effect and temperature dependent scaling behavior of dynamic ferroelectric hysteresis studies on modified BTO. J Phys Chem Solids 169:110844. https://doi.org/10.1016/j.jpcs.2022.110844

    Article  CAS  Google Scholar 

  48. Zaghouene H, Kriaa I, Khemakhem H (2018) Ferroelectric and electrocaloric effect in lead-free (Ba1−xCax)1–3y/2BiyTiO3 ceramics. J Mater Sci Eng B 227:110–115. https://doi.org/10.1016/j.mseb.2017.10.014

    Article  CAS  Google Scholar 

  49. Nikola N, Weyland F, Rossetti GA (2021) Electrocaloric properties and caloric figure of merit in the ferroelectric solid solution BaZrO3–BaTiO3 (BZT). Jr. J Eur Ceram Soc 41:1280–1287. https://doi.org/10.1016/j.jeurceramsoc.2020.10.017

    Article  CAS  Google Scholar 

  50. Yuan R, Liu Z, Xu Y, Yin R, He J, Bai Y, Zhou Y, Li J, Xue D, Lookman T (2022) Optimizing electrocaloric effect in barium titanate-based room temperature ferroelectrics: combining landau theory. Mach Learn Synth Acta Mater 235:118054. https://doi.org/10.1016/j.actamat.2022.118054

    Article  CAS  Google Scholar 

  51. Anokhin AS, Es’kov AV, Pakhomov OV, Semenov AA, Lähderanta E (2019) Electrocaloric effect and dielectric properties in ferroelectric ceramics based on solid solution of barium-calcium titanate. J Phys Conf Ser 1400:077004. https://doi.org/10.1088/1742-6596/1400/7/077004

    Article  CAS  Google Scholar 

  52. Wang L, Wang J, Li B, Zhong X, Wang F, Song H, Zeng Y, Huangab D, Zhou Y (2014) Enhanced room temperature electrocaloric effect in barium titanate thin films with diffuse phase transition. RSC Adv 4:21826–21829. https://doi.org/10.1039/C4RA02317J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not Applicable

Funding

The authors did not receive any fund.

Author information

Authors and Affiliations

Authors

Contributions

The author MT contributed to the carried out experiments, collected data, analyzed and wrote the original draft. The author KK supervised the studies and reviewed the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to K. Kamakshi.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest to this work.

Ethics approval

The authors assure that this paper is the authors own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere. The paper reflects the author’s own research and analysis in a truthful and complete manner.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasneem, M., Kamakshi, K. Dysprosium doping induced effects on structural, dielectric, energy storage density, and electro-caloric response of lead-free ferroelectric barium titanate ceramics. J Mater Sci 59, 1472–1485 (2024). https://doi.org/10.1007/s10853-023-09264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09264-y

Navigation