Skip to main content
Log in

Polymer-infiltration-pyrolysis (PIP) inspired hydrophobic nano-coatings for improved corrosion resistance

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nature-inspired hydrophobic coatings have caught great attention due to their repellency to corrosive mediums and less interaction between substrate and chemical species. Aluminum is considered one of the metals having superior properties against corrosion due to passive film formation. It can further be enhanced by the formation of a hierarchical structure through 2nd step anodization. In previous studies, carbon infiltrated in anodized alumina pores through CVD method (chemical vapor deposition) was quite an expensive and complex method. The fabrication of anti-corrosion coating with a simple and cost-effective method will broaden the aluminum alloy applications in the chemical, petrochemical, and aerospace industries, etc. In this research, pyrolytic carbon is infiltrated in porous alumina through pyrolysis at three different temperatures for 30 min under a controlled environment by using flaxseed oil as a source of carbon. The surface morphology along with chemical composition and wetting angle were studied through SEM (Scanning Electron Microscope), EDX (Energy Dispersive X-ray Spectroscopy), and Sessile drop method. It was found that both low surface energy and high roughness participate in increasing the wetting angle. Nanocomposite coating having maximum carbon content has a maximum wetting angle with inorganic liquid. Based on the electrochemical behavior determined by Tafel and EIS (Electrochemical Impedance Spectroscopy) analysis, the hydrophobic coating containing 57.5% carbon content having a contact angle of 95° exhibits maximum corrosion resistance of around 28,000 kohm as compared to anodized aluminum having minimum corrosion resistance of around 4.26 kohm. The results and the cost-effective method could be beneficial in aircraft parts as well as in aeronautical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Singh G, Goyal S, Sharma N, Sharma P (2017) A comprehensive study on aluminium alloy series – a review. Recent Adv Mech Eng 1:11–27

    Google Scholar 

  2. Zhang D, Wang L, Qian H, Li X (2016) Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. J Coatings Technol Res 13(1):11–29. https://doi.org/10.1007/s11998-015-9744-6

    Article  CAS  Google Scholar 

  3. Dell’oca CJ, Pulfrey DL, and Young L (1971) Anodic Oxide Films. In: Physics of Thin Films, vol 6,. Francombe MH and RWBT-P of Hoffman TF, Eds Elsevier, pp 1–79

  4. Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411. https://doi.org/10.1149/1.2781142

    Article  CAS  Google Scholar 

  5. Zhang Y, Chen Y, Bian G, Zhang Y (2021) Electrochemical behavior and corrosion mechanism of anodized 7B04 aluminum alloy in acid NaCl environments. J Alloys Compd 886:161231. https://doi.org/10.1016/j.jallcom.2021.161231

    Article  CAS  Google Scholar 

  6. Zhang GA, Xu LY, Cheng YF (2008) Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol–water solution. Electrochim Acta 53(28):8245–8252. https://doi.org/10.1016/j.electacta.2008.06.043

    Article  CAS  Google Scholar 

  7. Sulka GD, Stroobants S, Moshchalkov V, Borghs G, Celis J-P (2002) Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid. J Electrochem Soc 149(7):D97. https://doi.org/10.1149/1.1481527

    Article  CAS  Google Scholar 

  8. Bensalah W, DePetris-Wery M, Ayedi HF (2016) Young’s modulus of anodic oxide layers formed on aluminum in sulphuric acid bath. Mater Lett 179:82–85. https://doi.org/10.1016/j.matlet.2016.05.035

    Article  CAS  Google Scholar 

  9. Bensalah W, Elleuch K, Feki M, Wery M, Ayedi HF (2007) Optimization of anodic layer properties on aluminium in mixed oxalic/sulphuric acid bath using statistical experimental methods. Surf Coat Technol 201(18):7855–7864. https://doi.org/10.1016/j.surfcoat.2007.03.027

    Article  CAS  Google Scholar 

  10. Piao C, Winandy JE, Shupe TF (2010) From hydrophilicity to hydrophobicity : a critical review : part I. Wettability and surface behavior. Wood Fiber Sci 42(4):490–510

    CAS  Google Scholar 

  11. Ghosh UU, Nair S, Das A, Mukherjee R, DasGupta S (2019) Replicating and resolving wetting and adhesion characteristics of a Rose petal. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2018.10.028

    Article  Google Scholar 

  12. Bhushan B, Nosonovsky M (2010) The rose petal effect and the modes of superhydrophobicity. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2010.0203

    Article  Google Scholar 

  13. Wu B, Lu S, Xu W, Cui S, Li J, Han PF (2017) Study on corrosion resistance and photocatalysis of cobalt superhydrophobic coating on aluminum substrate. Surf Coat Technol 330(May):42–52. https://doi.org/10.1016/j.surfcoat.2017.09.060

    Article  CAS  Google Scholar 

  14. Varshney P, Lomga J, Gupta PK, Mohapatra SS, Kumar A (2018) Durable and regenerable superhydrophobic coatings for aluminium surfaces with excellent self-cleaning and anti-fogging properties. Tribol Int 119:38–44. https://doi.org/10.1016/j.triboint.2017.10.033

    Article  Google Scholar 

  15. Zhu G et al (2019) Poly (vinyl butyral)/Graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer (Guildf) 172:415–422. https://doi.org/10.1016/j.polymer.2019.03.056

    Article  CAS  Google Scholar 

  16. Hormozi MA, Yaghoubi M, Bahrololoom ME (2021) A facile method for fabrication of hybrid hydrophobic-hydrophilic surfaces on anodized aluminum template by electrophoretic deposition. Thin Solid Films 724:138597. https://doi.org/10.1016/j.tsf.2021.138597

    Article  CAS  Google Scholar 

  17. Pisarek M et al (2015) Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity. Appl Surf Sci 357:1736–1742. https://doi.org/10.1016/j.apsusc.2015.10.011

    Article  CAS  Google Scholar 

  18. Zhao JZ, Ahmed T, Jiang HX, He J, Sun Q (2017) Solidification of immiscible alloys: a review. Acta Metall Sin (Engl Lett) 30(1):1–28. https://doi.org/10.1007/s40195-016-0523-x

    Article  CAS  Google Scholar 

  19. Ram SC, Chattopadhyay K, Chakrabarty I (2017) High temperature tensile properties of centrifugally cast in-situ Al-Mg2Si functionally graded composites for automotive cylinder block liners. J Alloys Compd 724:84–97. https://doi.org/10.1016/j.jallcom.2017.06.306

    Article  CAS  Google Scholar 

  20. Ram SC, Chattopadhyay K, Chakrabarty I (2019) Microstructures and high temperature mechanical properties of A356-Mg2Si functionally graded composites in as-cast and artificially aged (T6) conditions. J Alloys Compd 805:454–470. https://doi.org/10.1016/j.jallcom.2019.07.075

    Article  CAS  Google Scholar 

  21. Ram SC, Chattopadhyay K, Chakrabarty I (2016) Dry sliding wear behavior of A356 alloy/Mg2Sip functionally graded in-situ composites: effect of processing conditions. Tribol Ind 38(3):371–384

    Google Scholar 

  22. Ram SC, Chattopadhyay K, Chakrabarty I (2018) Effect of magnesium content on the microstructure and dry sliding wear behavior of centrifugally cast functionally graded A356-Mg 2 Si in situ composites. Mater Res Express 5(4):46535. https://doi.org/10.1088/2053-1591/aabbea

    Article  CAS  Google Scholar 

  23. Cao D et al (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25(1):71–93. https://doi.org/10.1002/we.2661

    Article  Google Scholar 

  24. Cao D, Malakooti S, Kulkarni VN, Ren Y, Lu H (2021) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech Time-Dependent Mater 25(3):353–363. https://doi.org/10.1007/s11043-020-09448-y

    Article  CAS  Google Scholar 

  25. Wang X et al (2021) The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. Conf Proc Soc Exp Mech Ser. https://doi.org/10.1007/978-3-030-59542-5_4

    Article  Google Scholar 

  26. Iwai M, Kikuchi T (2021) Fabrication of unique porous alumina films with extremely high porosity and an ultra-flat barrier layer by anodizing aluminum in sodium metaborate. Electrochim Acta 399:139440. https://doi.org/10.1016/j.electacta.2021.139440

    Article  CAS  Google Scholar 

  27. Belwalkar A, Grasing E, Van Geertruyden W, Huang Z, Misiolek WZ (2008) Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J Memb Sci 319(1–2):192–198. https://doi.org/10.1016/j.memsci.2008.03.044

    Article  CAS  Google Scholar 

  28. Mohan D, Pittman CUJ, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  29. Shahbaz M, Al-Ansari T, Inayat A, and Inayat M (2022) Chapter 15 - Technical readiness level of biohydrogen production process and its value chain. Yusup S and NABT-V-C of Rashidi B (Eds) Elsevier, pp 335–355

  30. Naqvi SR et al (2021) Recent developments on sewage sludge pyrolysis and its kinetics: resources recovery, thermogravimetric platforms, and innovative prospects. Comput Chem Eng 150:107325. https://doi.org/10.1016/j.compchemeng.2021.107325

    Article  CAS  Google Scholar 

  31. Malki M et al (2023) Date palm biochar and date palm activated carbon as green adsorbent—synthesis and application. Curr Pollut Rep. https://doi.org/10.1007/s40726-023-00275-6

    Article  Google Scholar 

  32. Tan H et al (2021) A review on the comparison between slow pyrolysis and fast pyrolysis on the quality of lignocellulosic and lignin-based biochar. IOP Conf Ser Mater Sci Eng 1051:1–8. https://doi.org/10.1088/1757-899X/1051/1/012075

    Article  Google Scholar 

  33. Servadei F, Zoli L, Galizia P, Melandri C, Sciti D (2021) Preparation of UHTCMCs by hybrid processes coupling polymer infiltration and pyrolysis with hot pressing and vice versa. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2021.12.039

    Article  Google Scholar 

  34. Jeong B, Uhm S, Kim JH, Lee J (2013) Pyrolytic carbon infiltrated nanoporous alumina reducing contact resistance of aluminum/carbon interface. Electrochim Acta 89:173–179. https://doi.org/10.1016/j.electacta.2012.10.113

    Article  CAS  Google Scholar 

  35. Zhang ZS, Wang LJ, Li D, Li SJ, Ozkan N (2011) Characteristics of flaxseed oil from two different flax plants. Int J Food Prop 14(6):1286–1296. https://doi.org/10.1080/10942911003650296

    Article  CAS  Google Scholar 

  36. Gouda N, Singh RK, Meher SN, Panda AK (2017) Production and characterization of bio oil and bio char from flax seed residue obtained from supercritical fluid extraction industry. J Energy Inst 90(2):265–275. https://doi.org/10.1016/j.joei.2016.01.003

    Article  CAS  Google Scholar 

  37. Gupta S, Dey M, Javaid S, Ji Y, Payne S (2020) On the design of novel biofoams using lignin, wheat straw, and sugar beet pulp as precursor material. ACS Omega 5(28):17078–17089. https://doi.org/10.1021/acsomega.0c00721

    Article  CAS  Google Scholar 

  38. Watanabe T (2009) Wettability of ceramic surfaces - a wide range control of surface wettability from super hydrophilicity to super hydrophobicity, from static wettability to dynamic wettability. J Ceram Soc Jpn 117(1372):1285–1292. https://doi.org/10.2109/jcersj2.117.1285

    Article  CAS  Google Scholar 

  39. Tavakoli AH et al (2013) Amorphous alumina nanoparticles: structure, surface energy, and thermodynamic phase stability. J Phys Chem C. https://doi.org/10.1021/jp405820g

    Article  Google Scholar 

  40. Bainbridge IF, Taylor JA (2013) The surface tension of pure aluminum and aluminum alloys. Metall Mater Trans A Phys Metall Mater Sci. https://doi.org/10.1007/s11661-013-1696-9

    Article  Google Scholar 

  41. Kozbial A et al (2014) Understanding the intrinsic water wettability of graphite. Carbon N Y. https://doi.org/10.1016/j.carbon.2014.03.025

    Article  Google Scholar 

  42. Mattia D, Bau HH, Gogotsi Y (2006) Wetting of CVD carbon films by polar and nonpolar liquids and implications for carbon nanopipes. Langmuir. https://doi.org/10.1021/la0518288

    Article  Google Scholar 

  43. Setyarini PH (2020) Influence of anodizing process on tensile strength AA 6061 T6. Int J Emerg Trends Eng Res 8(6):2501–2507. https://doi.org/10.30534/ijeter/2020/48862020

    Article  Google Scholar 

  44. Shibli SMA, George S (2007) Electrochemical impedance spectroscopic analysis of activation of Al–Zn alloy sacrificial anode by RuO2 catalytic coating. Appl Surf Sci 253(18):7510–7515. https://doi.org/10.1016/j.apsusc.2007.03.052

    Article  CAS  Google Scholar 

  45. Jun Cui X, Zhou Lin X, Hai Liu C, Song Yang R, Wen Zheng X, Gong M (2015) Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros Sci. https://doi.org/10.1016/j.corsci.2014.10.041

    Article  Google Scholar 

  46. Mirhashemihaghighi S et al (2016) Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings. Corros Sci 106:16–24. https://doi.org/10.1016/j.corsci.2016.01.021

    Article  CAS  Google Scholar 

  47. Yuan SJ, Xu FJ, Pehkonen SO, Ting YP, Kang ET, Neoh KG (2008) Biocorrosion behavior of titanium oxide/butoxide-coated stainless steel. J Electrochem Soc. https://doi.org/10.1149/1.2885073

    Article  Google Scholar 

  48. Bouchama L, Azzouz N, Boukmouche N, Chopart JP, Daltin AL, Bouznit Y (2013) Enhancing aluminum corrosion resistance by two-step anodizing process. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2013.08.046

    Article  Google Scholar 

  49. Zhang Y, Du Q, Lin T, Tang S, Hu J (2021) A study on the corrosion resistance of hydrophobic coatings on 65mn steel. Coatings. https://doi.org/10.3390/coatings11111399

    Article  Google Scholar 

Download references

Acknowledgements

I am very thankful to Allah Almighty without Him nothing is impossible. I am thankful to my parents and Metallurgical & Materials Engineering Department UET Lahore, Pakistan, especially Dr. Ing. Furqan Ahmed and Mr. Hayat.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MR: Conceptualization, Methodology, Software, Data curation, Writing Original draft preparation. Dr. EUH: Supervision, Visualization, Investigation, Writing- Reviewing, and Editing. Dr. RAK: Software and Validation. Mr. WS: Software, Conceptualization. Mr. AA: Conceptualization, Methodology.

Corresponding author

Correspondence to Ehsan Ul Haq.

Ethics declarations

Conflict of interest

It has been stated that we do not have any known personal relationships or financial interests that could influence the work in this paper.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Ul Haq, E., Abdul Karim, M.R. et al. Polymer-infiltration-pyrolysis (PIP) inspired hydrophobic nano-coatings for improved corrosion resistance. J Mater Sci 59, 828–846 (2024). https://doi.org/10.1007/s10853-023-09226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09226-4

Navigation