Skip to main content
Log in

Highly sulfur-loaded dual-conductive cathodes based on nanocellulose for lithium-sulfur batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li–S) batteries have received great attention due to their high theoretical specific capacity and energy density, wide range of sulfur sources, and environmental compatibility. However, the development of Li–S batteries is limited by a series of problems such as the non-conductivity and volume expansion of the sulfur cathode and the shuttle of lithium polysulfide. It is frequently feasible to alleviate these difficulties by blending carbon-based conductive additives with the cathode material, utilizing a nanostructured cathode, or enhancing the cathode's flexibility. Here, an ion/electron dual-conductive three-dimensional (3D) network structure has been constructed using TEMPO-oxidized cellulose nanofibrils (OCNF) and modified carbon nanotubes. We improved the ionic/electronic conductivity of the cathode materials by adding NCNT or SCNT, and also boosted its electrochemical performance through effective inhibition of polysulfide shuttling by amino or sulfonic acid groups that adsorb the polysulfide. The results showed that the 40-CNFSC@S composite cathode with the introduction of sulfonated carbon nanotubes (SCNT) contained up to 73.9 wt% of sulfur and exhibited the best electrochemical performance, with an initial specific capacity of 1052 mAh g−1 at 0.5 C, and the specific capacity was still as high as 837 mAh g−1 after 120 cycles. Its great cycling stability allows for environmentally friendly and low-cost cellulose-based materials to be utilized in Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or used during the study are available from the corresponding author by request.

References

  1. Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries-ten critical questions. Chem-Eur J 22(22):7324–7351. https://doi.org/10.1002/chem.201600040

    Article  CAS  Google Scholar 

  2. Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang (2021) Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv Mater 33(29):e2003666. https://doi.org/10.1002/adma.202003666

    Article  CAS  Google Scholar 

  3. Fan L, Li M, Li X, Xiao W, Chen Z, Lu J (2019) Interlayer material selection for lithium-sulfur batteries. Joule 3(2):361–386. https://doi.org/10.1016/j.joule.2019.01.003

    Article  CAS  Google Scholar 

  4. Du L, Wang H, Yang M, Liu L, Niu Z (2020) Free-standing nanostructured architecture as a promising platform for high-performance lithium-sulfur batteries. Small Struct 1(3):2000047. https://doi.org/10.1002/sstr.202000047

    Article  Google Scholar 

  5. Fang X, Peng H (2015) A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small 11(13):1488–1511. https://doi.org/10.1002/smll.201402354

    Article  CAS  Google Scholar 

  6. Zhang L, Liu Y, You Y, Vinu A, Mai L (2023) NASICONs-type solid-state electrolytes: the history, physicochemical properties, and challenges. Interdiscip Mater 2(1):91–110. https://doi.org/10.1002/idm2.12046

    Article  Google Scholar 

  7. Peng Y, Peng Z, Qiu Y, Yan K, Wang (2020) Improved performance of lithium-sulfur batteries at elevated temperature by porous aluminum. J Energy Storage 27:101104. https://doi.org/10.1016/j.est.2019.101104

    Article  Google Scholar 

  8. Feng S, Fu ZH, Chen X, Zhang Q (2022) A review on theoretical models for lithium-sulfur battery cathodes. InfoMat 4(3):e12304. https://doi.org/10.1002/inf2.12304

    Article  CAS  Google Scholar 

  9. Wang X, u Z, Ang EH, Zhao X, Wu X, Liu Y (2022) Prospects for managing end-of-life lithium-ion batteries: present and future. Interdiscip Mater 1(3):417–433. https://doi.org/10.1002/idm2.12041

    Article  Google Scholar 

  10. Zhang B, Ren L, Wang Y, Xu X, Du Y, Dou S (2022) allium-based liquid metals for lithium-ion batteries. Interdiscip Mater 1(3):354–372. https://doi.org/10.1002/idm2.12042

    Article  Google Scholar 

  11. Jiang J, Liu J (2022) Iron anode-based aqueous electrochemical energy storage devices: recent advances and future perspectives. Interdiscip Mater 1(1):116–139. https://doi.org/10.1002/idm2.12007

    Article  Google Scholar 

  12. Yan J, Huang H, Tong J, Li W, Liu X, Zhang H, Huang H, Zhou W (2022) Recent progress on the modification of high nickel content NCM: coating. Doping Single Crystall Interdiscip Mater 1(3):330–353. https://doi.org/10.1002/idm2.12043

    Article  Google Scholar 

  13. Wang G, Liang Y, Liu H, Wang C, Li D, Fan L (2022) Scalable thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip Mater 1(3):434–444. https://doi.org/10.1002/idm2.12045

    Article  Google Scholar 

  14. Wang F, Liao X, Wang H, Zhao Y, Mao J, Truhlar DG (2022) Bioinspired mechanically interlocking holey graphene@SiO2 anode. Interdiscip Mater 1(4):517–525. https://doi.org/10.1002/idm2.12032

    Article  Google Scholar 

  15. Huang Y (2022) The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarit. Interdiscip Mater 1(3):323–329. https://doi.org/10.1002/idm2.12048

    Article  Google Scholar 

  16. Li W, Liu M, Wang J, Zhang Y (2017) Progress of lithium/sulfur batteries based on chemically modified carbon. Acta Phys-Chim Sin 33(1):165–182. https://doi.org/10.3866/PKU.WHXB201609232

    Article  CAS  Google Scholar 

  17. Liu J, Wang M, Xu N, Qian T, Yan C (2018) Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Mater 15:53–64. https://doi.org/10.1016/j.ensm.2018.03.017

    Article  Google Scholar 

  18. Liu S, Yao L, Zhang Q, Li LL, Hu NT, Wei LM, Wei H (2017) Advances in high-performance lithium-sulfur batteries. Acta Phys-Chim Sin 33(12):2339–2358. https://doi.org/10.3866/PKU.WHXB201706021

    Article  CAS  Google Scholar 

  19. Liu YT, Liu S, Li R, ao XP (2021) Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv Mater 33(8):e2003955. https://doi.org/10.1002/adma.202003955

    Article  CAS  Google Scholar 

  20. Cao Y, Wu C, Wang W, Li Y, You J, Zhang B, Zou J, Abuelgasim S, Zhu T, Wu J, Zhao J (2022) Modification of lithium sulfur batteries by sieving effect: long term investigation of carbon molecular sieve. J Energy Storage 54:105228. https://doi.org/10.1016/j.est.2022.105228

    Article  Google Scholar 

  21. Borchardt L, Althues H, Kaskel S (2017) Carbon nano-composites for lithium-sulfur batteries. Curr Opin green Sustain Chem 4:64–71. https://doi.org/10.1016/j.cogsc.2017.02.008

    Article  Google Scholar 

  22. Shao Q, Zhu S, Chen J (2023) A review on lithium-sulfur batteries: challenge. Devel Perspect Nano Res 16:8097–8138. https://doi.org/10.1007/s12274-022-5227-0

    Article  CAS  Google Scholar 

  23. Sun YZ, Huang JQ, Zhao CZ, Zhang Q (2017) A review of solid electrolytes for safe lithium-sulfur batteries. Sci China-Chem 60(12):1508–1526. https://doi.org/10.1007/s11426-017-9164-2

    Article  CAS  Google Scholar 

  24. Tang T, Hou Y (2018) Multifunctionality of carbon-based frameworks in lithium sulfur batteries. Electrochem Energy Rev 1(3):403–432. https://doi.org/10.1007/s41918-018-0016-x

    Article  CAS  Google Scholar 

  25. Wang J, Zhang W, Wei H, Zhai X, Wang F, Zhou Y, Tao F, Zhai P, Liu W, Liu Y (2022) Recent advances and perspectives in conductive-polymer-based composites as cathode materials for high-performance lithium-sulfur batteries. Sustain Energ Fuels 6(12):2901–2923. https://doi.org/10.1039/d2se00254j

    Article  CAS  Google Scholar 

  26. Zhang YZ, Zhang Z, Liu S, Li R, ao XP (2018) Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery. ACS Appl Mater Interfaces 10(10):8749–8757. https://doi.org/10.1021/acsami.8b00190

    Article  CAS  Google Scholar 

  27. Nojabaee M, Sievert B, Schwan M, Schettler J, Warth F, Wagner N, Milow B, Friedrich KA (2021) Ultramicroporous carbon aerogels encapsulating sulfur as the cathode for lithium-sulfur batteries. J Mater Chem A 9(10):6508–6519. https://doi.org/10.1039/d0ta11332h

    Article  CAS  Google Scholar 

  28. uo L, Li X, Xu Z, Zhou S, Zhang X, Ni J, Cheng Y, Yang Z (2020) Spatial effects between two 3D self-supported carbon-nanotube-based skeleton as binder-free cathodes for lithium-sulfur batteries. Chemistry Select 5(36):11383–11390. https://doi.org/10.1002/slct.202002090

    Article  CAS  Google Scholar 

  29. Wu S, Cao Q, Wang M, Yu T, Wang H, Lu S (2018) Engineering multi-chambered carbon nanospheres@carbon as efficient sulfur hosts for lithium-sulfur batteries. J Mater Chem A 6(23):10891–10897. https://doi.org/10.1039/c8ta02911c

    Article  CAS  Google Scholar 

  30. Yang T, Xia J, Piao Z, Yang L, Zhang S, Xing Y, Zhou (2021) raphene-based materials for flexible lithium-sulfur batteries. ACS Nano 15(9):13901–13923. https://doi.org/10.1021/acsnano.1c03183

    Article  CAS  Google Scholar 

  31. Wang X, Fang X, uo X, Wang Z, Chen L (2013) Sulfur in hierarchically pore-structured carbon pillars as cathode material for lithium-sulfur batteries. Electrochim Acta 97:238–243. https://doi.org/10.1016/j.electacta.2013.02.126

    Article  CAS  Google Scholar 

  32. Wang M, Xia X, Zhong Y, Wu J, Xu R, Yao Z, Wang D, Tang W, Wang X, Tu J (2019) Porous carbon hosts for lithium-sulfur batteries. Chem-Eur J 25(15):3710–3725. https://doi.org/10.1002/chem.201803153

    Article  CAS  Google Scholar 

  33. Wang Y, Huang X, Zhang S, Hou Y (2018) Sulfur hosts against the shuttle effect. Small Methods 2(6):1700345. https://doi.org/10.1002/smtd.201700345

    Article  CAS  Google Scholar 

  34. Yang L, Li Q, Wang Y, Chen Y, uo X, Wu Z, Chen, Zhong B, Xiang W, Zhong Y (2020) A review of cathode materials in lithium-sulfur batteries. Ionics 26(11):5299–5318. https://doi.org/10.1007/s11581-020-03767-3

    Article  CAS  Google Scholar 

  35. Xiong C, Ren YX, Jiang HR, Wu MC, Zhao TS (2019) Artificial bifunctional protective layer composed of carbon nitride nanosheets for high performance lithium-sulfur batteries. J Energy Storage 26:101006. https://doi.org/10.1016/j.est.2019.101006

    Article  Google Scholar 

  36. Capková D, Kazda T, Čech O, Király N, Zelenka T, Čudek P, Sharma A, Hornebecq V, Fedorková AS, Almáši M (2022) Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. J Energy Storage 51:104419. https://doi.org/10.1016/j.est.2022.104419

    Article  Google Scholar 

  37. Li S, Warzywoda J, Wang S, Ren, Fan Z (2017) Bacterial cellulose derived carbon nanofiber aerogel with lithium polysulfide catholyte for lithium-sulfur batteries. Carbon 124:212–218. https://doi.org/10.1016/j.carbon.2017.08.062

    Article  CAS  Google Scholar 

  38. Yan Y, Yang Y, Fan C, Zou Y, Deng Q, Liu H, Brandell D, Yang R, Xu Y (2022) Waste office paper derived cellulose-based carbon host in freestanding cathodes for lithium-sulfur batteries. ChemElectroChem 9(11):e202200191. https://doi.org/10.1002/celc.202200191

    Article  CAS  Google Scholar 

  39. Zhang Z, Fang Z, Xiang Y, Liu D, Xie Z, Qu D, Sun M, Tang H, Li J (2021) Cellulose-based material in lithium-sulfur batteries: a review. Carbohydr Polym 255:117469. https://doi.org/10.1016/j.carbpol.2020.117469

    Article  CAS  Google Scholar 

  40. Huang Y, Zheng M, Lin Z, Zhao B, Zhang S, Yang J, Zhu C, Zhang H, Sun D, Shi Y (2015) Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium-sulfur batteries. J Mater Chem A 3(20):10910–10918. https://doi.org/10.1039/c5ta01515d

    Article  CAS  Google Scholar 

  41. Datta S, Jo C, De Volder M, Torrente-Murciano L (2020) Morphological control of nanostructured V2O5 by deep eutectic solvents. ACS Appl Mater Inter 12(16):18803–18812. https://doi.org/10.1021/acsami.9b17916

    Article  CAS  Google Scholar 

  42. Nair J, Bella F, Angulakshmi N, Stephan A, erbaldi C (2016) Nanocellulose-laden composite polymer electrolytes for high performing lithium-sulphur batteries. Energy Storage Mater 3:69–76. https://doi.org/10.1016/j.ensm.2016.01.008

    Article  Google Scholar 

  43. Sun Q, Li YD, Liu L, Feng ZB, Lu P, Wang ZR, Zhang X (2019) Heat-treatment-assisted approach towards scalable synthesis of mesoporous carbons for high-performance lithium-sulfur battery. Mater Lett 246:165–168. https://doi.org/10.1016/j.matlet.2019.03.043

    Article  CAS  Google Scholar 

  44. Balakumar K, Sathish R, Kalaiselvi N (2016) Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium-sulfur system. Electrochim Acta 209:171–182. https://doi.org/10.1016/j.electacta.2016.05.069

    Article  CAS  Google Scholar 

  45. Li L, Hou L, Cheng J, Simmons T, Zhang F, Zhang LT, Linhardt RJ, Koratkar N (2018) A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium-sulfur batteries. Energy Storage Mater 15:388–395. https://doi.org/10.1016/j.ensm.2018.08.019

    Article  Google Scholar 

  46. Xu H, Liu Y, Bai Q, Wu R (2019) Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium-sulfur batteries. J Mater Chem A 7(8):3558–3562. https://doi.org/10.1039/c8ta11615f

    Article  CAS  Google Scholar 

  47. Bharti VK, Pathak AD, Sharma CS, Khandelwal M (2022) Ultra-high-rate lithium-sulfur batteries with high sulfur loading enabled by Mn2O3-carbonized bacterial cellulose composite as a cathode host. Electrochim Acta 422:140531. https://doi.org/10.1016/j.electacta.2022.140531

    Article  CAS  Google Scholar 

  48. Li S, Lin Z, He, Huang J (2020) Cellulose substance derived nanofibrous activated carbon as a sulfur host for lithium-sulfur batteries. Colloid Surf A-Phys Eng Asp 602:125129. https://doi.org/10.1016/j.colsurfa.2020.125129

    Article  CAS  Google Scholar 

  49. Li Y, Zhou Y, Muhammad Y, Zhou J, uo Z, Tan H, uo S (2021) Nanocellulose and its derivatives toward advanced lithium sulfur batteries. ACS Mater Lett 3(8):1130–1142. https://doi.org/10.1021/acsmaterialslett.1c00210

    Article  CAS  Google Scholar 

  50. Chen J, Liu Y, Liu Z, Chen Y, Zhang C, Yin Y, Yang Q, Shi Z, Xiong C (2020) Carbon nanofibril composites with high sulfur loading fabricated from nanocellulose for high-performance lithium-sulfur batteries. Colloid Surf A-Physicochem Eng Asp 603:125249. https://doi.org/10.1016/j.colsurfa.2020.125249

    Article  CAS  Google Scholar 

  51. Isogai A, Hanninen T, Fujisawa S, Saito T (2018) Review: catalytic oxidation of cellulose with nitroxyl radicals under cob for aqueous conditions. Prog Polym Sci 86:122–148. https://doi.org/10.1016/j.progpolymsci.2018.07.007

    Article  CAS  Google Scholar 

  52. Liu Z, Chen J, Zhan Y, Liu B, Xiong C, Yang Q, Hu -H (2019) Fe3+ cross-linked polyaniline/cellulose nanofibril hydrogels for high-performance flexible solid-state supercapacitors. ACS Sustain Chem Eng 7(21):17653–17660. https://doi.org/10.1021/acssuschemeng.9b03674

    Article  CAS  Google Scholar 

  53. Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q, Xiong C (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6(4):1403–1411. https://doi.org/10.1039/c7ta08188j

    Article  CAS  Google Scholar 

  54. Yang Q, Shi Z, Qi Z, Yang J, Lao J, Saito T, Xiong C, Isogai A (2017) High-performance TEMPO-oxidized cellulose nanofibril/quantum dot nanocomposites. J Control Release 259:E115–E116. https://doi.org/10.1016/j.jconrel.2017.03.240

    Article  Google Scholar 

  55. Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries. J Phys Chem C 116(16):8910–8915. https://doi.org/10.1021/jp300950m

    Article  CAS  Google Scholar 

  56. Jayaprakash N, Shen J, Moganty S, Corona A, Archer A (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Edit 50(26):5904–5908. https://doi.org/10.1002/anie.201100637

    Article  CAS  Google Scholar 

  57. Choi JW, Cheruvally, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J Power Sources 183(1):441–445. https://doi.org/10.1016/j.jpowsour.2008.05.038

    Article  CAS  Google Scholar 

  58. Lee BJ, Kang TH, Lee HY, Samdani JS, Jung Y, Zhang C, Yu Z, Xu L, Cheng L, Byun S, Lee YM, Amine K, Yu JS (2020) Revisiting the role of conductivity and polarity of host materials for long-life lithium-sulfur battery. Adv Energy Mater 10(22):1903934. https://doi.org/10.1002/aenm.201903934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (Grant No: 520LH017), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2213), and Hainan Institute of Wuhan University of Technology (2021KF0015).

Author information

Authors and Affiliations

Authors

Contributions

SC contributed to conceptualization, investigation, data curation, writing—original draft; JC contributed to methodology, data curation; QY contributed to methodology, project administration, writing—review; CX contributed to funding acquisition, methodology, supervision, editing; RF contributed to methodology, writing—review; ZS contributed to funding acquisition, writing—review, editing.

Corresponding authors

Correspondence to Quanling Yang or Zhuqun Shi.

Ethics declarations

Conflicts of interest

There are no conflicts of interest in this study.

Ethical approval

There were no ethical violations in this study.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 558 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Chen, J., Yang, Q. et al. Highly sulfur-loaded dual-conductive cathodes based on nanocellulose for lithium-sulfur batteries. J Mater Sci 59, 563–576 (2024). https://doi.org/10.1007/s10853-023-09217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09217-5

Navigation