Skip to main content

Advertisement

Log in

Simulation-based microstructural analysis of thermal–mechanical fatigue behavior in SiCp/A356 composites for brake disc applications

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article presents a study on the fatigue damage behavior of SiCp/A356 composites in severe service conditions of brake discs. A representative volume element (RVE) was constructed using finite element modeling technology to simulate the microstructure characteristics of the composites which takes into account the fatigue characteristics of the matrix. The RVE was loaded with local strain components and temperature histories obtained through the simulation of the braking condition of an urban rail train. The study found that the alternating effect of compressive stress and residual tensile stress at the matrix near the interface, especially at the sharp corners of SiC particles, causes fatigue damage on the matrix. Brake temperature was identified as the main factor for thermal–mechanical fatigue damage of the brake disc, and the matrix near the high-temperature position of the friction surface was found to have the highest degree of damage and the fastest failure process. The fatigue microcrack morphology and micro-failure modes inside the RVE were in good agreement with those of SiCp/A356 brake disc, and the RVE was able to characterize the micro-fatigue failure behavior of the SiCp/A356 composites under service thermal–mechanical load. This article provides a novel approach for investigating the thermo-mechanical fatigue behavior of SiCp/A356 composites from macroscopic to microscopic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

All data used to support the findings of this study are included within the article.

References

  1. Pan L, Han J, Yang Z, Wang J, Li X, Li Z, Li W (2017) Temperature effects on the friction and wear behaviors of SiCp/A356 composite against semimetallic materials. Adv Mater Sci Eng 2017:1824080. https://doi.org/10.1155/2017/1824080

    Article  CAS  Google Scholar 

  2. Yang Z, Wang Z, Wang J, Li Z, Liu X (2021) Tribological properties of SiCp/A356 composites against semimetallic materials under dry and wet conditions. J Mater Eng Perform 30:4148–4161. https://doi.org/10.1007/s11665-021-05722-3

    Article  CAS  Google Scholar 

  3. Chen C (2007) Research on design and manufacture of SiCp/A356 composites brake disc. MD Thesis, Beijing Jiaotong university

  4. Djafri M, Bouchetara M, Busch C, Khatir S, Khatir T, Weber S, Shbaita K, Wahab MA (2018) Influence of thermal fatigue on the wear behavior of brake discs sliding against organic and semimetallic friction materials. Tribol Trans 61:861–868. https://doi.org/10.1080/10402004.2018.1437491

    Article  CAS  Google Scholar 

  5. Li Z, Han J, Yang Z, Pan L (2014) The effect of braking energy on the fatigue crack propagation in railway brake discs. Eng Fail Anal 44:272–284. https://doi.org/10.1016/j.engfailanal.2014.05.022

    Article  Google Scholar 

  6. Wang Z, Han J, Domblesky JP, Li Z, Fan X, Liu X (2019) Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc. Wear 428:45–54. https://doi.org/10.1016/j.wear.2019.01.124

    Article  CAS  Google Scholar 

  7. Chen NP, Zeng SM, Liu ZY (2008) Preparation, microstructures and deformation behavior of SiCP/6066Al composites produced by PM route. J Mater Process Technol 202:27–40. https://doi.org/10.1016/j.jmatprotec.2007.08.044

    Article  CAS  Google Scholar 

  8. Wu W, Wei W, Wang Y, Sha A, Hao W (2022) Monitoring damage progression in tensile tested SiCp/Al composites using acoustic emission. Front Mater 9:918091. https://doi.org/10.3389/fmats.2022.918091

    Article  Google Scholar 

  9. Li Z, Han J, Yang Z, Li W (2015) Analyzing the mechanisms of thermal fatigue and phase change of steel used in brake discs. Eng Fail Anal 57:202–218. https://doi.org/10.1016/j.engfailanal.2015.07.002

    Article  CAS  Google Scholar 

  10. Meshkov VV, Zorenko DA, Barabonova IA, Afanasieva LE (2017) Transformation of 20X13 steel structure during intensive friction interactions. J Frict Wear 38:47–52. https://doi.org/10.3103/S106836661701007X

    Article  Google Scholar 

  11. Wu Y, Liu Y, Chen H, Chen Y, Li H, Yi W (2019) Microstructure evolution and crack propagation feature in thermal fatigue of laser-deposited Stellite 6 coating for brake discs. Surf Coat Technol 358:98–107. https://doi.org/10.1016/j.surfcoat.2018.11.011

    Article  CAS  Google Scholar 

  12. Pan L, Han J, Yang Z, Li X, Wang J, Li Z, Li W (2017) Thermal fatigue crack behavior of SiCp/A356 composites prepared by stirring casting. Results Phys 7:927–933. https://doi.org/10.1016/j.rinp.2017.02.010

    Article  Google Scholar 

  13. Kennedy AR, Wyatt SM (2000) The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs. Compos Sci Technol 60:307–314. https://doi.org/10.1016/S0266-3538(99)00125-6

    Article  CAS  Google Scholar 

  14. Lewandowski JJ, Liu C, Hunt WH (1989) Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A 107:241–255. https://doi.org/10.1016/0921-5093(89)90392-4

    Article  Google Scholar 

  15. San Marchi C, Cao FH, Kouzeli M, Mortensen A (2002) Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater Sci Eng A 337:202–211. https://doi.org/10.1016/S0921-5093(02)00035-7

    Article  Google Scholar 

  16. Smirnov SV, Konovalov AV, Myasnikova MV, Khalevitsky YV, Smirnov AS, Igumnov AS (2018) A numerical study of plastic strain localization and fracture in Al/SiC metal matrix composite. Phys Mesoch 21:305–313. https://doi.org/10.1134/S1029959918040045

    Article  Google Scholar 

  17. Chapman NC, Silva J, Williams JJ, Chawla N, Xiao X (2015) Characterisation of thermal cycling induced cavitation in particle reinforced metal matrix composites by three-dimensional (3D) X-ray synchrotron tomography. Mater Sci Technol 31:573–578. https://doi.org/10.1179/1743284714Y.0000000582

    Article  CAS  Google Scholar 

  18. Kurumlu D, Payton EJ, Young ML, Schoebel M, Requena G, Eggeler G (2012) High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography. Acta Mater 60:67–78. https://doi.org/10.1016/j.actamat.2011.09.022

    Article  CAS  Google Scholar 

  19. Feng YC, Geng L, Li AB, Zheng ZZ (2010) Fabrication and characteristics of in situ Al12W particles reinforced aluminum matrix composites by reaction sintering. Mater Des 31:965–967. https://doi.org/10.1016/j.matdes.2009.08.021

    Article  CAS  Google Scholar 

  20. Liu YF, Tanaka Y (2003) In situ characterization of tensile damage behavior of a plain-woven fiber-reinforced polymer-derived ceramic composite. Mater Lett 57:1571–1578. https://doi.org/10.1016/S0167-577X(02)01034-0

    Article  CAS  Google Scholar 

  21. Velgosova O, Besterci M, Ivan J, Suelleiova K (2014) Influence of technological factors on dispersion strengthened materials deformation mechanism studied by ‘in-situ tensile test in SEM.’ Int J Mater Prod Technol 49:129–159. https://doi.org/10.1504/IJMPT.2014.064037

    Article  CAS  Google Scholar 

  22. Gong D, Zhu M, You Z, Han H, Chao Z, Jiang L (2022) In-situ TEM study on the effect of stacking faults on micro-plasticity and proportional limit in SiC/Al composites. Compos Part B 244:110180. https://doi.org/10.1016/j.compositesb.2022.110180

    Article  CAS  Google Scholar 

  23. Deshmukh SP, Mishra RS, Robertson IM (2010) Investigation of creep threshold stresses using in situ TEM straining experiment in an Al-5Y(2)O(3)-10SiC composite. Mater Sci Eng A 527:2390–2397. https://doi.org/10.1016/j.msea.2009.12.015

    Article  CAS  Google Scholar 

  24. Chu D, Ma Y, Li P, Tang P (2020) Bending properties and failure mechanism of continuous W-Core-SiC fiber-reinforced 2024 and 6061 aluminum matrix composites. J Mater Eng Perform 29:6295–6306. https://doi.org/10.1007/s11665-020-05119-8

    Article  CAS  Google Scholar 

  25. Zhang J, Ouyang QB, Guo Q, Li ZQ, Fan GL, Su YS, Jiang L, Lavernia EJ, Schoenung JM, Zhang D (2016) 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites. Compos Sci Technol 123:1–9. https://doi.org/10.1016/j.compscitech.2015.11.014

    Article  CAS  Google Scholar 

  26. Ma S, Zhang X, Chen T, Wang X (2020) Microstructure-based numerical simulation of the mechanical properties and fracture of a Ti-Al3Ti core-shell structured particulate reinforced A356 composite. Mater Des 191:108685. https://doi.org/10.1016/j.matdes.2020.108685

    Article  CAS  Google Scholar 

  27. Zhang JF, Zhang XX, Wang QZ, Xiao BL, Ma ZY (2018) Simulations of deformation and damage processes of SiCp/Al composites during tension. J Mater Sci Technol 34:627–634. https://doi.org/10.1016/j.jmst.2017.09.005

    Article  CAS  Google Scholar 

  28. Baek K, Shin H, Yoo T, Cho M (2019) Two-step multiscale homogenization for mechanical behaviour of polymeric nanocomposites with nanoparticulate agglomerations. Compos Sci Technol 179:97–105. https://doi.org/10.1016/j.compscitech.2019.05.006

    Article  CAS  Google Scholar 

  29. Zhang XX, Xiao BL, Andrae H, Ma ZY (2016) Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models. Compos Struct 137:18–32. https://doi.org/10.1016/j.compstruct.2015.10.045

    Article  Google Scholar 

  30. Bouafia F, Serier B, Bouiadjra BAB (2012) Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite. Comput Mater Sci 54:195–203. https://doi.org/10.1016/j.commatsci.2011.10.030

    Article  CAS  Google Scholar 

  31. Yang S, Hu W, Meng Q, Zhao B (2019) A new continuum damage mechanics-based two-scale model for high-cycle fatigue life prediction considering the two-segment characteristic in S-N curves. Fatig Fract Eng Mater Struct 43:387–402. https://doi.org/10.1111/ffe.13161

    Article  Google Scholar 

  32. Koumpias AS, Tserpes KI, Pantelakis S (2014) Progressive damage modelling of 3D fully interlaced woven composite materials. Fatig Fract Eng Mater Struct 37:696–706. https://doi.org/10.1111/ffe.12142

    Article  Google Scholar 

  33. Bernard F, Kamali-Bernard S, Prince W (2008) 3D multi-scale modelling of mechanical behaviour of sound and leached mortar. Cem Concr Res 38:449–458. https://doi.org/10.1016/j.cemconres.2007.11.015

    Article  CAS  Google Scholar 

  34. Böhm HJ (2011) Continuum micromechanics of materials. Institut für Leichtbau und Biomechanik. TU Wien

  35. Simulia (2014) Abaqus analysis user’s manual, version 6.14. Providence, RI: Dassault Systemes Simulia Corp. https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/Support/manuals/v6.14/abaqus/v6.14/HTML/

  36. Zang J, Yang Z, Song P, Sun M, Li Z, Li C (2023) Investigating the influence of SiC particle characteristics on the mechanical properties and damage behaviors of SiCp/A356 composites. Appl Compos Mater 30:1645–1665. https://doi.org/10.1007/s10443-023-10140-w

    Article  CAS  Google Scholar 

  37. Su YS, Ouyang QB, Zhang WL, Li ZQ, Guo Q, Fan GL, Zhang D (2014) Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. Mater Sci Eng A 597:359–369. https://doi.org/10.1016/j.msea.2014.01.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the research support grant provided by the Fundamental Research Funds for the Central Universities (2020JBZ113).

Author information

Authors and Affiliations

Authors

Contributions

JZ was involved in conceptualization, methodology, software, investigation, formal analysis, writing—original draft. ZY helped in conceptualization, funding acquisition, resources, supervision, writing—review & editing. MS contributed to data curation, validation. ZL was involved in resources, supervision. YW and SY helped in visualization, investigation.

Corresponding author

Correspondence to Zhiyong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, J., Yang, Z., Sun, M. et al. Simulation-based microstructural analysis of thermal–mechanical fatigue behavior in SiCp/A356 composites for brake disc applications. J Mater Sci 59, 650–668 (2024). https://doi.org/10.1007/s10853-023-09195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09195-8

Navigation